image

Contents

Preface

List of Abbreviations

Chapter 1: Introduction

Chapter 2: Synthesis, Properties, and Applications of Functionalized 2,2′:6′,2″-Terpyridines

2.1 Introduction

2.2 Basic Synthetic Strategies

2.3 Synthesis and Properties of 2,2′:6′,2″-Terpyridine Derivatives

2.4 2,2′:6′,2″-Terpyridines Symmetrically Substituted on the Outer Pyridine Rings

2.5 Ziessel-Type 2,2′:6′,2″-Terpyridines

2.6 Kröhnke-Type 2,2′:6′,2″-Terpyridines

2.7 Miscellaneous Terpyridine-Analogous Compounds

Chapter 3: Chemistry and Properties of Terpyridine Transition Metal Ion Complexes

3.1 Introduction

3.2 Basic Synthetic Strategies and Characterization Tools

3.3 Ru II and Os II Complexes

3.4 Iridium(III) Complexes with Terpyridine Ligands

3.5 Platinum(II) Mono(terpyridine) Complexes

Chapter 4: Metallo-Supramolecular Architectures Based on Terpyridine Complexes

4.1 Introduction

4.2 Terpyridine-Containing Metallo-Macrocycles

4.3 The HETTAP Concept

4.4 Racks and Grids

4.5 Helicates

4.6 Rotaxanes and Catenanes

4.7 Miscellaneous Structures

Chapter 5: π-Conjugated Polymers Incorporating Terpyridine Metal Complexes

5.1 Introduction

5.2 Metallo-Supramolecular Polymerization

5.3 Metallopolymers Based on π-Conjugated Bis(terpyridine)s

5.4 Main-Chain Metallopolymers Based on Terpyridine-Functionalized π-Conjugated Polymers

Chapter 6: Functional Polymers Incorporating Terpyridine-Metal Complexes

6.1 Introduction

6.2 Polymers with Terpyridine Units in the Side-Chain

6.3 Polymers with Terpyridines within the Polymer Backbone

Chapter 7: Terpyridine Metal Complexes and their Biomedical Relevance

7.1 Introduction

7.2 Terpyridine Metal Complexes with Biological Activity

Chapter 8: Terpyridines and Nanostructures

8.1 Introduction

8.2 Terpyridines and Surface Chemistry

8.3 Terpyridines and Inorganic Nanomaterials

8.4 Terpyridines and Nano-Structured TiO 2: Photovoltaic Applications

8.5 Organopolymeric Resins, Beads, and Nanoparticles

Chapter 9: Catalytic Applications of Terpyridines and Their Transition Metal Complexes

9.1 Introduction

9.2 (Asymmetric) Catalysts in Organic Reactions

9.3 Electrocatalytic Oxidation and Reduction Processes

9.4 Photocatalytic Processes

Chapter 10: Concluding Remarks

Index

Related Titles

Decher, G., Schlenoff, J. B. (eds.)

Multilayer Thin Films

Sequential Assembly of Nanocomposite Materials

2012

ISBN: 978-3-527-31648-9

Steed, J. W., Gate, P.

Supramolecular Chemistry

From Molecules to Nanomaterials

2012

ISBN: 978-0-470-74640-0

Martin, N., Nierengarten, J.-F. (eds.)

Supramolecular Chemistry of Fullerenes and Carbon Nanotubes

2012

ISBN: 978-3-527-32789-8

Harada, A. (ed.)

Supramolecular Polymer Chemistry

2012

ISBN: 978-3-527-32321-0

Samori, P., Cacialli, F. (eds.)

Functional Supramolecular Architectures

For Organic Electronics and Nanotechnology

2011

ISBN: 978-3-527-32611-2

Guldi, D. M., Martín, N. (eds.)

Carbon Nanotubes and Related Structures

Synthesis, Characterization, Functionalization, and Applications

2010

ISBN: 978-3-527-32406-4

Geckeler, K. E., Nishide, H. (eds.)

Advanced Nanomaterials

2010

ISBN: 978-3-527-31794-3

Laguna, A. (ed.)

Modern Supramolecular Gold Chemistry

Gold-Metal Interactions and Applications

2008

ISBN: 978-3-527-32029-5

image

Preface

Over the past few decades, supramolecular chemistry, that is, the self-assembly of molecules into complex architectures based on weak secondary interactions (e.g., metal-to-ligand coordination or hydrogen bonding), has evolved from a primary scientific field into daily-life applications. In particular, the combination of transition metal ions with N-heteroaromatics, as ligands, has rapidly moved to the center of attention in laboratories around the world. As one of the most prominent representatives of this family, terpyridine was discovered in 1931 and has been shown to lend itself to the construction of specific, stable metal complexes with unique properties that can easily be tuned by the choice of the metal ion and/or the structural modification. An overview of the syntheses and early applications of the parent and substituted 2,2′:6′,2″-terpyridines was given in the book Modern Terpyridine Chemistry in 2006. The emerging applications in the fields of polymer science, optoelectronic devices, medicinal chemistry, nanotechnology, and molecular catalysis prompted us to review the utilization of terpyridine-based materials in more detail and with respect to current applications.

We have attempted to compile the key examples in each field to assist and help future researchers in this arena; many excellent examples are available and support the rationale for continued exploitation of this family of heterocyclic compounds, but we must admit that not all of them could be chosen due to space constraints. Therefore, we apologize in advance to those authors whose work has not been incorporated.

The authors would be, as always, most grateful to know of any errors, which may have crept into the manuscript despite the multiple proofreading by many of our colleagues. We also thank our spouses, relatives, and friends for their patience and assistance in completing this work.

Jena and Akron, July 2011

Ulrich S. Schubert

Andreas Winter

George R. Newkome

List of Abbreviations

A2780 human ovarian carcinoma cells
A-498 human kidney carcinoma cells
A-549 human lung carcinoma cells
AAS atomic absorption spectroscopy
acac acetylacetonate
ACI average current intensity
AFM atomic force microscopy
AIBN 2,2′-azobisiso-butyronitrile
Alq3 tris(8-hydroxyquinoline)aluminum
AP aminopentanol
APCE absorbed photon-to-current efficiency
ATRP atom-transfer radical polymerization
AUC analytical ultracentrifugation
BA butyl acrylate
BCP bond critical point
BEL-7420 human hepato carcinoma cells
BGC-823 human gastric gland carcinoma cells
BINOL 1,1′-binaphth-2-ol
bip 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine
bip-OH 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridin-4-ol
bmim-PF6 1-butyl-3-methylimidazolium hexafluorophosphate
BNCT boron neutron capture therapy
BODIPY boron-dipyrromethene
BPG basal plane pyrolytic graphite
bpm 2,2′-bipyrimidine
bpp 1,4-bis(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzene
bpy 2,2′-bipyridine
bpz 2,2′-bipyrazine
BSA bovine serum albumin
BTB bipyridine-terpyridine-bipyridine
btp 1,4-bis(2,6-bis(1-butyl-1H-1,2,3-triazol-4-yl)pyridin-4-yl)-benzene or 4,4′-di(tert-butyl)-2,2′-bipyridine or 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine(s)
btpyan 1,8-bis(2,2′:6′,2“-terpyridin-4-yl)anthracene
bzimpy 2,6-bis(benzimidazol-2-yl)pyridine
C13 human ovarian carcinoma cells
CALB lipase B from Candida antarctica
DAC deoxycholic acid
CCAAC CuI-catalyzed alkyne-azide cycloaddition (reaction)
CCD19Lu human normal pulmonary cell
CD circular dichroism
CDI N,N′-carbonyldiimidazole
CFS competitive fluorescence spectroscopy
CH1 human larynx and pharynx cancer
CIE Commision International d’Eclairage
CITS current imaging tunneling spectroscopy
C^N^N mono-cyclometalating tridentate (ligand)
CNT carbon nanotube
COD cycloocta-1,5-diene
CRP controlled radical polymerization
cryo-TEM cryogenic transition electron microscopy
CS charge-separated
CSF competitive fluorescence spectroscopy
ct calf thymus
CT charge-transfer
CTA chain-transfer agent
CV cyclic voltammetry
CVP chemical vapor deposition
Cyst cystine
Cyt-c cytochrome-c
CzMA 2-(N-carbazolyl)ethyl methacrylate
dba dibenzylideneacetone
DCA deoxycholic acid
DEDTC diethyldithiocarbamate
DFT density functional theory
DHP di(hexadecyl)phosphate or 1,4-dihydropyridine
diad di(iso-propylazo)dicarboxylate
DLS dynamic light scattering
dmbpy 4,4′-dimethyl-2,2′-bipyridine
DMF or dmf N,N-dimethylformamide
DMPO 5,5-dimethyl-1-pyrroline-N-oxide
DMSO or dmso dimethylsulfoxide
DNA deoxyribonuleic acid
DOSY diffusion-ordered spectroscopy (NMR)
DP degree-of-polymerization
D-P-A donor-photosensitizer-acceptor (array)
dpp 2,4-di(pyridin-2-yl)pyrazolate or 2,9-diphenyl-1,10-phenanthroline
dppene cis-1,2-bis(diphenylphosphino)ethylene
dppf 1,1′-bis(diphenylphosphino)ferrocene
DPV differential pulse voltammetry
dpbq 8,8′-diphenyl-3,3′-biisoquinoline
dpp 2,9-diphenyl-1,10-phenanthroline
dppf 1,1′-bis(diphenylphosphino)ferrocene
dppt 5,6-diphenyl-3-(phenanthrolin-2-yl)-1,2,4-triazine
dppz dipyrido[3,2-a:2′,3′-c]phenazine
dppzp 6′-(2″-pyridyl)dipyrido[3,2-a:2′,3′-c]phenazine
DS degree-of-substitution
DSB double-strand break
DSC differential scanning calorimetry
DSSC dye-sensitized solar cell
DTC dithiocarbamate
DTE dithienylethene
E0-0 zero-zero spectroscopic energy
EDA ethyl diazoacetate
EDOT 3,4-ethylenedioxythienyl
EDTA ethylenediaminetetraacetic acid
EHMO extended Hückel molecular orbital
EI electron ionization (mass spectrometry)
EF (luminescence) enhancement factor
EL electroluminescence
emim-I 1-ethyl-3-methylimidazolium iodide
EPMA electron probe microanalysis (spectrum)
EPR electron paramagnetic resonance (spectroscopy)
EPT electron/proton-transfer
ESI electrospray ionization
ET electron-transfer
EthBr ethidium bromide
EVSA-T human breast cancer cells
EWG electron-withdrawing group
Fc ferrocene
FF fill factor
FID fluorescent intercalator displacement
FS Fremy’s salt (potassium nitrosodisulfonate)
FTICR Fourier-transform ion cyclotron resonance
FTO fluorine-doped tin oxide
FWHM full width at half maximum
Gly glycine
GMP guanosine 5′-monophosphate
GR glutathione reductase
GS ground state
GSH glutathione
H226 human non-small lung cancer cells
HBC hexa-peri-hexabenzocoronene
HCT-116, -15 human colon adenocarcinoma cells
HEEDTA sodium salt of N-hydroxyethylethylenediamine triacetic acid
HeLa cervical cancer cells from Henrietta Lacks
HepG2 human liver carcinoma cell
HET helix-extension (parameter)
HETPHEN heteroleptic phenanthroline (complexation)
HETTAP heteroleptic terpyridine and phenanthroline (complexation)
HL-60 human promyelocytic leukemia cells
HOMO highest occupied molecular orbital
HOPG highly-ordered pyrolytic graphite
HS high-spin (state)
HSA human serum albumin
HT-29 human colon adenocarcinoma cells
HTelo human telomeric (DNA sequence)
hTrx thioredoxin
hTrxR thioredoxin reductase
HWE Horner-Wadsworth-Emmons (condensation reaction)
Isc short circuit current
IC50 half maximal inhibitory concentration
ICP inductively coupled plasma (mass spectrometry)
IDA interdigitated (microelectrode) array
IET interfacial electron transfer
IGROV human ovarian carcinoma cells
IL intraligand
ILCT intraligand charge-transfer
IPCE incident photon-to-current conversion efficiency
IRE iron regulatory element
ITC isothermal titration calorimetry
ITE interfacial electron transfer
ITO indium tin oxide
J current density
KB human epidermoid cancer cells
KB binding constant
K0 ion-free binding constant
KSV Stern-Volmer constant
L luminance
L1210 murine leukemia cell
LAS light absorption sensitizer
LB Langmuir-Blodgett
LBL layer-by-layer
LC ligand-centered or liquid crystalline
LCST lower critical solution temperature
LD linear dichroism (spectroscopy)
LDA lithium di(iso-propyl)amide
LF lactoferrin
LHE light harvesting efficiency
LIESST light-induced excited-state spin-trapping
LLCT ligand-to-ligand charge-transfer
L/L0 relative contour length
LS low-spin (state)
LUMO lowest unoccupied molecular orbital
M19 MEL human melanoma cells
MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight (mass spectrometry)
MC metal-centered
MCF-7 human breast cancer cells
mCPBA m-chloroperbenzoic acid
MeCN acetonitrile
MeCys S-methylcysteine
MEF metal-enhanced fluorescence
MEMS micro-electro-mechanical systems
MEPE metallo-supramolecular polyelectrolytes
mes 2,4,6-trimethylphenyl (mesityl)
MF melamine formaldehyde
MLCT metal-to-ligand charge-transfer
MLLCT metal-ligand-to-ligand charge-transfer
MMA methyl methacrylate
MMM molecular monolayer memory (device)
MMNVM molecular monolayer non-volatile memory (devices)
Mn number-average molar mass
MO molecular orbital
MPEG poly(ethylene oxide) monomethyl ether
MRI magnetic resonance imaging
MS mass spectrometry
MV2+ 1,1′-dimethyl-4,4′-bipyridinium, methyl viologen
MW molecular wire
MWNT multi-walled carbon nanotubes
NCI-H460 human lung carcinoma cells
NDR negative differential resistance
NEM N-ethylmorpholine
NHE normal hydrogen electrode
NLO non-linear optics
NMP nitroxide-mediated polymerization or N-methylpyrrolidone
NMR nuclear magnetic resonance (spectroscopy)
N^N bidentate N-heteroaromatic ligand
N^N^N tridentate (ligand)
ODN oligodeoxynucleotide
ODT n-octadecanethiol
OEGMA oligo(ethylene oxide) methacrylate
OHT oligohexylthiophene
OL optical limiter
OLED organic light-emitting diode
OPE oligo(p-phenylene-ethylene)
OPV oligo(phenylenevinylidene)
ORTEP Oak Ridge thermal-ellipsoid plot
OSC organic solar cells
P2VP/P4VP poly(2-vinylpyridine)/poly(4-vinylpyridine)
P-388 human leukemia cell lines
P3HT poly(3-hexylthiophene)
PAA poly(acrylic acid)
PAC polyelectrolyte-amphiphile complex
pbpy 6-phenyl-2,2′-bipyridine
PC-3 human prostate adenocarcinoma cells
PCBM [6,6]-phenyl-C61-methyl butyrate
PCD poly(chloromethylstyrene-co-divinylbenzene)
PCET proton-coupled electron-transfer
PCL poly(ε-caprolactone)
PDA photo-diode array
PDI perylene diimide
PDMAA poly(N,N-dimethyl-acrylamide)
PDMS poly(dimethylsiloxane)
PEB poly(ethylene-co-butylene)
PEC photoelectrochemical
PEG poly(ethylene glycol)
PEI poly(ethylene imine)
PEDOT poly(3,4-ethylenedioxythiophene)
PEtOx poly(2-ethyloxazoline)
PET photoinduced electron-transfer
PFDS poly(ferrocenyldimethylsilane)
phen 1,10-phenanthroline
phi 9,10-phenanthrenequinone diimine
PI polyisoprene
pia photoinduced absorption
PL photoluminescence
PLA poly(L-lactide)
PLED polymer light-emitting diode
PMDETA N,N,N,N“,N“-pentamethyldiethylenetriamine
PMMA poly(methyl methacrylate)
PNIPAM poly(N-isopropylacrylamide)
POM polarized optical microscopy or polyoxometalate
PPFS poly(pentafluorostyrene)
PPG poly(propylene glycol)
PPV poly(p-phenylenevinylidene)
PS poly(styrene)
PSC polymer solar cell
PSCA potential-step chronoamperometry
psl postsynthetic labeling
PSS poly(styrene sulfonate)
PTFMS poly(4-trifluorometylstyrene)
PTHF poly(tetrahydrofuran)
PUR polyurethane
PV photovoltaic
PVC poly(vinylchloride)
PVD physical vapor deposition
pydic pyridine-2,6-dicarboxylic acid
QCM-D quartz crystal microbalance with dissipation (monitoring)
QCR quartz crystal resonator
QGY-TR50 human hepatocellular carcinoma cell line
QQN quasi-quadratic network
QTAIM quantum theory of atoms in molecules
qu quinoline
RAFT reversible addition-fragmentation chain-transfer polymerization
Rh hydrodynamic radius
RNA ribonucleic acid
ROESY rotating-frame Overhauser effect spectroscopy
ROMP ring-opening metathesis polymerization
ROP ring-opening polymerization
RPTEC human normal cell line
SAM self-assembled monolayer
SAML self-assembled multilayer
SANS small angle neutron scattering
SAXS small angel X-ray scattering
SC spin-crossover
SCE standard calomel electrode
SEC size exclusion chromatography
SEM scanning electron microscopy
SF-268 glioblastoma cell lines
SGC-7901 human gastric carcinoma cells
SHE standard hydrogen electrode
SHG second-harmonic generation
SIMS secondary ion mass spectrometry
SK-MEL-2 human skin melanoma cells
SKOV-3 human ovary adenocarcinoma cells
SmC smectic C (phase)
SMM single molecule magnet
SPAN sulfonated polyaniline
SPG schizophyllan
SPM scanning probe microscopy
SPS surface plasmon spectroscopy or solid-phase synthesis
SSB single-strand break
STM scanning tunneling microscopy
SUNE-1 human nasopharyngeal carcinoma cells
SWNT single-walled carbon nanotube
T temperature
taz 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole
TBAP tetra(n-butyl)ammonium hexafluorophosphate
TBT terpyridine-bipyridine-terpyridine
TD time-dependent
TEA triethylamine
TEG tetra(ethylene glycol)
TEM transmission electron microscopy
TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxyl
TEOA triethanolamine
TEOS tetraethoxysilane
TFA trifluoroacetic acid
Tg glass transition temperature
TGA thermal gravimetric analysis
THF tetrahydrofuran
THz terahertz (spectroscopy)
TIPNO 2,2,5-trimethyl-4-phenyl-3-azahexane nitroxide
Tm melting tempoerature
TMP 2,2,6,6-tetramethylpiperidine
TP+ 2,4,6-triarylpyridium
tppz 2,3,5,6-tetra(pyridin-2yl)pyrazine
tptz tris(pyridin-2-yl)triazine
tpy 2,2′:6′,2″-terpyridine
TR trypanothione reductase
tpy-PO(OH)2 2,2′:6′,2“-terpyridin-4′-yl-phosphonic acid
tpy-SPG terpyridine-modified schizophyllan
ttpy 4′-tolyl-2,2′:6′,2″-terpyridine
TWIM travelling wave ion mobility (MS)
tppz 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine
UCST upper critical solution temperature
UPy ureidopyrimidinone
Voc open circuit voltage
WAXD wide angle powder X-ray diffraction
WIDR human colon carcinoma cells
WOLED white organic light-emitting diode
WRER write-multiple read-erase-multiple read
XAS X-ray absorption spectroscopy
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
ε elipticy
η overall power conversion efficiency or cell efficiency
εr relative permittivity value
ΦPL photoluminescence quantum yield
ΦPV photovoltaic quantum yield
τn electron lifetimes
ξM molar susceptibility
2VP 2-vinylpyridine
4VP 4-vinylpyridine