Cover Page

Related Titles

Bezryadin, A.

Superconductivity in Nanowires

Fabrication and Quantum Transport

2012

ISBN: 978-3-527-40832-0

Also available in digital formats

 

Buckel, W. and Kleiner, R.

Supraleitung

Grundlagen und Anwendungen7.,
aktualisierte und erweiterte Auflage

2012

ISBN: 978-3-527-41139-9

 

Ireson, G.

Discovering Superconductivity – An Investigative Approach

2012

ISBN: 978-1-119-99141-0

Also available in digital formats

 

Waser, R. (ed.)

Nanoelectronics and Information Technology

Advanced Electronic Materials and Novel Devices; Third, Completely Revised and Enlarged Edition

2012

ISBN: 978-3-527-40927-3

 

Kalsi, S.S.

Applications of High Temperature Superconductors to Electric Power Equipment

2011

ISBN: 978-0-470-16768-7

Also available in digital formats

 

Bhattacharya, R., Paranthaman, M. (eds.)

High Temperature Superconductors

2010

ISBN: 978-3-527-40827-6

Also available in digital formats

 

Padamsee, H.

RF Superconductivity

Science, Technology, and Applications

2009

ISBN: 978-3-527-40572-5

Also available in digital formats

 

Hansen, R.C.

Electrically Small, Superdirective, and Superconducting Antennas

2006

ISBN: 978-0-471-78255-1

Also available in digital formats

Edited by Paul Seidel

Applied Superconductivity

Handbook on Devices and Applications

 

 

Volume 1

 

 

 

Title Page

Conductorart by Claus Grupen (drawing)

nfgz001
nfgz001

Preface

During the celebrations of the 100 years of superconductivity in 2011, many times the question came up about real applications and the commercial impact of superconducting materials. Actually, since already the Applied Superconductivity Conference 1998 themed “Superconductivity coming to market” had promised a positive answer to this long-standing question, we felt that the present situation should be evaluated and summarized. There exist a lot of very good textbooks on basics of superconductivity as well as some monographs concerning special applications for specialists in detail like the The SQUID Handbook edited by John Clarke and Alex Braginski. The collections of articles like “Engineering Superconductivity” edited by Peter Lee in 2001, reflecting the status up to 1999, and “Applied Superconductivity” edited by Bernhard Seeber, already published in 1998, were first steps in the direction to discuss and introduce the applications for a wider audience. Nevertheless, today, they no longer represent the topical situation and latest developments. Thus, the immense progress in applications of superconductivity will be demonstrated within this new handbook on a level which covers the range from popular aspects for students and beginners till details for specialists. Because of the finite size for a two-volume book, the basic knowledge on superconductivity had to be reduced to a minimum required for understanding the main part on applications. The historical development is not reflected in detail but sometimes with respect to the actual status in order to demonstrate the speed of progress. For historic details, we refer the reader to the book 100 Years of Superconductivity edited by Horst Rogalla and Peter H. Kes, which also covers many historic aspects of applications.

This handbook wants to demonstrate that applied superconductivity has a rising impact in science and industry. The breathtaking development within the last 20 years involved a large number of different fields, for example, in medicine, geophysics, high-energy physics, and power engineering. Thus, not all examples and details can be given here, but the references will guide the reader to additional sources. The dynamics of the development of superconductivity, especially in materials and technologies toward applications is astonishing. Applications even in niches like radio frequency (RF) filters for mobile communication are a strong forcing mechanism in this development. As one example for the rapid development, the rise in critical current densities in high-Tc superconductors from 103 A cm−2 in the beginning about 20 years ago till today's second generation of YBCO-coated conductors with some 106 A cm−2 should be mentioned. This progress is the basis for many magnet or power applications. But this example also illustrates the problem of production and availability of big amounts of superconducting materials adapted to the requirements needed for all the possible projects. A production of the coated conductors fixed by pre-contracts between producers and costumers as has been done for low-Tc superconducting cables for accelerators like CERN or fusion reactors like International Thermonuclear Experimental Reactor (ITER) may be a good practical way to cope with this problem. There will be a rising importance of superconducting materials, technologies, and devices due to their superior properties in comparison with well-established commercial standards. The aspects of saving of energy and reduction of pollution open new possibilities for applied superconductivity as expressed in the topic of the ASC 2014 “Race to energy efficiency.”

In future, there will be many systems where the user or costumer takes the advantages of superconductivity sometimes even without knowing that there is some superconducting component like in medical magnetic resonance imaging (MRI) (MRT in German). The applications of superconductors will be additionally forced by the progress in cooling technologies with cryogen-free or cryocooler solutions. I hope that this handbook will help to enhance the understanding of the immense potential of superconductivity for applications in many fields.

The handbook is organized in the following parts:

  1. Fundamentals of superconductivity and main related effects will be given only in a way to understand the main part of the book.
  2. Superconducting materials will be introduced, but besides some overview in the fundamentals, there will be detailed contributions only on materials relevant for applications now and in near future.
  3. Technology, preparation, and characterization concerning bulk materials, single crystals, thin films, Josephson junctions, wires and tapes, as well as cooling technology will be discussed with respect to the parameters and conditions needed for applications.
  4. The main part consists of eight extended chapters on different application fields, including engineering aspects as well as main important parameters and interesting details up to examples for real applications.
  5. In the summary and outlook, we try to forecast the development of the present main applications within the next 20 years.

Finally, I like to thank all contributors, the referees, and the staff of Wiley-VCH, especially Vera Palmer, Ulrike Werner, and Nina Stadthaus, as well the staff of Laserwords, especially Madhubala Venkatesan, for their excellent contributions and stimulating cooperation.

Jena

September 15, 2014

Paul Seidel

List of Contributors

  1. Marie-Cécile Alvarez-Hérault
  2. Domaine Universitaire
  3. G2ELAB (Grenoble Institute of Technology, UJF, CNRS)
  4. Ense3, 11, rue des Mathématiques - BP 46
  5. Saint Martin d'Hères
  6. Cedex
  7. France

 

  1. Solveig Anders
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Tolga Aytug
  2. Oak Ridge National Laboratory
  3. Chemical Sciences Division
  4. PO Box 2008 MS6100
  5. Oak Ridge
  6. TN 37831-6100
  7. USA

 

  1. Robert Bach
  2. University of Applied Science
  3. South Westphalia
  4. Department of Electrical Engineering
  5. Lübecker Ring 2
  6. D-59494 Soest
  7. Germany

 

  1. Mikhail Belogolovskii
  2. National Academy of Sciences of Ukraine
  3. Donetsk Institute for Physics and Engineering
  4. Department of the Theory of Dynamic Properties of Complex Systems
  5. Street R. Luxemburg 72
  6. Donetsk
  7. Ukraine

 

  1. Sergey A. Belomestnykh
  2. Collider-Accelerator Department
  3. Bldg 911B, Brookhaven National Laboratory
  4. P.O Box 5000
  5. Upton
  6. NY 11973-5000
  7. USA

 

and

 

  1. Stony Brook University
  2. Department of Physics and Astronomy
  3. Stony Brook
  4. NY 11794
  5. USA

 

  1. Jörn Beyer
  2. Physikalisch-Technische Bundesanstalt (PTB)
  3. Cryophysics and Spectrometry
  4. Abbestr 2-12
  5. D-10587 Berlin
  6. Germany

 

  1. Joachim Bock
  2. Nexans SuperConductors GmbH
  3. Chemiepark Knapsack
  4. D-50351 Hürth
  5. Germany

 

  1. Luca Bottura
  2. CERN TE-MSC, M24500
  3. CH-1211 Geneva, 23
  4. Switzerland

 

  1. Audrius Brazdeikis
  2. University of Houston
  3. Department of Physics and Texas Center for Superconductivity
  4. Houston
  5. TX 77004
  6. USA

 

  1. Wolf-Rüdiger Canders
  2. Technische Universität Braunschweig
  3. Institut für Elektrische Maschinen
  4. Antriebe und Bahnen
  5. Postfach 3329
  6. D-38023 Braunschweig
  7. Germany

 

  1. Claudia Cantoni
  2. Oak Ridge National Laboratory
  3. Chemical Sciences Division
  4. PO Box 2008 MS6100
  5. Oak Ridge
  6. TN 37831-6100
  7. USA

 

  1. James R. Claycomb
  2. Houston Baptist University
  3. Department of Mathematics and Physics
  4. Fondren Road
  5. Houston
  6. TX 77074
  7. USA

 

  1. Roberto Cristiano
  2. CNR Istituto SPIN - Superconductors
  3. Innovative Materials and Devices
  4. UOS - Napoli
  5. Napoli
  6. Italy

 

  1. Jonathan A. Demko
  2. LeTourneau University
  3. School of Engineering and Engineering Technology
  4. South Mobberly Avenue
  5. Longview
  6. TX 75607
  7. USA

 

  1. Jean-Luc Duchateau
  2. CEA/IRFM
  3. Institute for Magnetic Fusion Research
  4. St Paul lez Durance Cedex
  5. France

 

  1. Andreas Erb
  2. Bayerische Akademie der Wissenschaften
  3. Walther-Meissner-Institut für Tieftemperaturforschung
  4. Walther-Meissner-Str 8
  5. D-85748 Garching
  6. Germany

 

  1. Robert L. Fagaly
  2. Quasar Federal Systems
  3. Pacific Center Blvd.
  4. Suite 203
  5. San Diego
  6. CA 92121
  7. USA

 

  1. Pascal Febvre
  2. University of Savoie
  3. IMEP-LAHC
  4. Campus Scientifique
  5. Le Bourget du Lac Cedex
  6. France

 

  1. Herbert C. Freyhardt
  2. University of Houston
  3. Texas Center for Superconductivity
  4. UH Science Center
  5. Houston
  6. TX 77204-5002
  7. USA

 

  1. Ludwig Fritzsch
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Günter Fuchs
  2. Leibniz-Institut für Festkörper-und Werkstoffforschung (IFW) Dresden
  3. Department Superconducting Materials
  4. Postfach 270116
  5. D-01171 Dresden
  6. Germany

 

  1. Camille Gandioli
  2. Domaine Universitaire
  3. G2ELAB (Grenoble Institute of Technology, UJF, CNRS)
  4. ENSE3
  5. 38402 Saint Martin d'Heres
  6. France

 

  1. Flavio Gatti
  2. INFN and Università di Genova
  3. Dipartimento di Fisica
  4. Via Dodecaneso 33
  5. Genova
  6. Italy

 

  1. Rene Geithner
  2. Helmholtz Institute Jena
  3. Fröbelstieg 3
  4. D-07743 Jena
  5. Germany

 

  1. Michael A. Green
  2. Lawrence Berkeley National Laboratory
  3. Engineering Division
  4. M/S 46-0161, 1 Cyclotron Road
  5. Berkeley
  6. CA 94720
  7. USA

 

and

 

  1. FRIB Michigan State University
  2. South Shaw
  3. East Lansing
  4. 48824
  5. USA

 

  1. Francesco Grilli
  2. Karlsruhe Institute of Technology
  3. Institute for Technical Physics
  4. Hermann-Von Helmholtz-Platz 1
  5. D-76344 Eggenstein-Leopoldshafen
  6. Germany

 

  1. Claus Grupen
  2. Siegen University
  3. Faculty for Science and Engineering
  4. Emmy-Noether-Campus
  5. Walter-Flex-Straße 3
  6. D-57068 Siegen
  7. Germany

 

  1. Nouredine Hadjsaid
  2. Domaine Universitaire
  3. G2ELAB (Grenoble Institute of Technology, UJF, CNRS)
  4. ENSE3
  5. 38402 Saint Martin d'Heres
  6. France

 

  1. Seungyong Hahn
  2. Massachusetts Institute of Technology
  3. Francis Bitter Magnet Laboratory, Plasma Science and Fusion and Center
  4. Albany Street
  5. Cambridge
  6. MA 02139
  7. USA

 

  1. Eric Hellstrom
  2. Florida State University
  3. Department of Mechanical Engineering
  4. National High Magnetic Field Laboratory
  5. Applied Superconductivity Center
  6. E. Paul Dirac Dr.
  7. Tallahassee
  8. FL 32310
  9. USA

 

  1. Dagmar Henrich
  2. Karlsruhe Institute of Technology
  3. Department of Electrical Engineering and Information Technology
  4. Institute of Micro- und Nanoelectronic Systems
  5. Hertzstraße 16
  6. D-76187 Karlsruhe
  7. Germany

 

and

 

  1. Oxford Instruments Omicron NanoScience
  2. Limburger Straße 75
  3. D-65232, Taunusstein-Neuhof
  4. Germany

 

  1. Roland Hott
  2. Karlsruhe Institute of Technology
  3. Institute of Solid State Physics
  4. Hermann-von-Helmholtz-Platz 1
  5. D-76021 Karlsruhe
  6. Germany

 

  1. John R. Hull
  2. Boeing
  3. Advanced Physics Applications
  4. P.O Box 3707, MC 2T-50
  5. Seattle
  6. WA 98124-2207
  7. USA

 

  1. Yukikazu Iwasa
  2. Massachusetts Institute of Technology
  3. Francis Bitter Magnet Laboratory
  4. Plasma Science and Fusion and Center
  5. Albany Street
  6. Cambridge
  7. MA 02139
  8. USA

 

  1. Quanxi Jia
  2. Los Alamos National Laboratory
  3. Center for Integrated Nanotechnologies
  4. MPA-CINT, MS K771
  5. Los Alamos
  6. NM 87545
  7. USA

 

  1. Jianyi Jiang
  2. National High Magnetic Field Laboratory
  3. Applied Superconductivity Center
  4. E. Paul Dirac Dr.
  5. Tallahassee
  6. FL 32310
  7. USA

 

  1. Andreas Kade
  2. Gemeinnützige Gesellschaft mbH
  3. ILK Dresden
  4. Institut für Luft- und Kältetechnik
  5. Bertolt-Brecht-Allee 20
  6. D-01309 Dresden
  7. Germany

 

  1. Gunter Kaiser
  2. Gemeinnützige Gesellschaft mbH
  3. ILK Dresden
  4. Institut für Luft- und Kältetechnik
  5. Bertolt-Brecht-Allee 20
  6. D-01309 Dresden
  7. Germany

 

  1. Swarn Singh Kalsi
  2. Consulting Engineer
  3. Kalsi Green Power Systems, LLC
  4. Renfield Drive
  5. Princeton
  6. NJ 08540
  7. USA

 

  1. Neeraj Khare
  2. Indian Institute of Technology Delhi
  3. Physics Department
  4. Hauz Khas
  5. New Delhi 110016
  6. India

 

  1. John Kirtley
  2. Stanford University
  3. Applied Physics
  4. Lomita Mall
  5. McCullough Bldg 139
  6. Stanford
  7. CA 94305
  8. USA

 

  1. Reinhold Kleiner
  2. Universität Tübingen
  3. Physikalisches Institut and Center for Collective Quantum Phenomena in LISA$^+$
  4. Auf der Morgenstelle 14
  5. D-72076 Tübingen
  6. Germany

 

  1. Johannes Kohlmann
  2. Physikalisch-Technische Bundesanstalt (PTB)
  3. Quantum Electronics
  4. Bundesallee 100
  5. D-38116 Braunschweig
  6. Germany

 

  1. Gernot Krabbes
  2. Leibniz-Institut für Festkörper-und Werkstoffforschung (IFW) Dresden
  3. Department Superconducting Materials
  4. Postfach 270116
  5. D-01171 Dresden
  6. Germany

 

  1. Hans-Joachim Krause
  2. Forschungszentrum Jülich
  3. Institute of Bioelectronics, Peter Grünberg Institute (PGI-8)
  4. Wilhelm-Johnen-Str.
  5. D-52425 Jülich
  6. Germany

 

  1. Helmut Krauth
  2. Bruker EAS
  3. Ehrichstraße 10
  4. D-63450 Hanau
  5. Germany

 

  1. Jürgen Kunert
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Jürgen Lisenfeld
  2. Karlsruhe Institute of Technology (KIT)
  3. Physikalisches Institut
  4. Wolfgang-Gaede-Straße 1
  5. D-76131 Karlsruhe
  6. Germany

 

  1. Cesar Luongo
  2. Jefferson Laboratory
  3. Kelvin Drive, Suite 3
  4. Newport News
  5. VA 23606
  6. USA

 

  1. Doris Maier
  2. Institut de RadioAstronomie
  3. IRAM
  4. 300, Rue de la Piscine
  5. St. Martin d'Heres
  6. France

 

  1. Robert McDermott
  2. University of Wisconsin
  3. Department of Physics
  4. University Avenue
  5. Madison
  6. WI 53706
  7. USA

 

  1. Hans-Georg Meyer
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Donald L. Miller
  2. Northrop Grumman Corporation
  3. Electronic Systems
  4. PO Box 1521, Mail Stop 3B10
  5. Baltimore
  6. MD 21203
  7. USA

 

  1. Antonio Morandi
  2. University of Bologna
  3. Department of Electrical
  4. Electronic and Information Engineering
  5. Viale Risorgimento 2
  6. Bologna
  7. Italy

 

  1. Michael Mück
  2. ez SQUID Mess- und Analysegeräte
  3. Herborner Strasse 9
  4. D-35764 Sinn
  5. Germany

 

  1. Oleg Mukhanov
  2. HYPRES Inc.
  3. Clearbrook Road
  4. Elmsford
  5. NY 10523
  6. USA

 

  1. Davide Nardelli
  2. Columbus Superconductors, S.p.A.
  3. Via delle Terre Rosse 30
  4. Genova
  5. Italy

 

  1. Hannes Nowak
  2. JenaSQUID GmbH & Co. KG
  3. Münchenroda 29
  4. D-07751 Jena
  5. Germany

 

  1. Gregor Oelsner
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Thomas Ortlepp
  2. CiS Research Institute for Microsensor Systems and Photovoltaics GmbH
  3. Konrad-Zuse-Street 14
  4. D-99099 Erfurt
  5. Germany

 

and

 

  1. Ilmenau University of Technology
  2. Microelectronics and nanoelectronic systems
  3. PO Box 10 05 65
  4. D-98684 Ilmenau
  5. Germany

 

  1. Hasan S. Padamsee
  2. Cornell University
  3. Laboratory for Elementary Particle Physics
  4. Sciences Drive
  5. Ithaca
  6. NY 14853-5001
  7. USA

 

and

 

  1. Fermilab
  2. P.O Box 500, MS 316
  3. Batavia
  4. IL 60510-5011
  5. USA

 

  1. Ilaria Pallecchi
  2. CNR-SPIN and University of Genova
  3. Dipartimento di Fisica
  4. Via Dodecaneso 33
  5. Genova
  6. Italy

 

  1. Mariappan P. Paranthaman
  2. Oak Ridge National Laboratory
  3. Chemical Sciences Division
  4. PO Box 2008 MS6100
  5. Oak Ridge
  6. TN 37831-6100
  7. USA

 

  1. Giovanni P. Pepe
  2. CNR Istituto SPIN - Superconductors
  3. Innovative Materials and Devices
  4. UOS - Napoli
  5. Napoli
  6. Italy

 

and

 

  1. University of Naples Federico II
  2. Department of Physics
  3. Via Cinthia
  4. Naples
  5. 80126 Monte Sant'Angelo
  6. Italy

 

  1. Werner Prusseit
  2. THEVA Dünnschichttechnik GmbH
  3. Rote-Kreuz Str. 8
  4. D-85737 Ismaning
  5. Germany

 

  1. John X. Przybysz
  2. Northrop Grumman Corporation
  3. Electronic Systems
  4. West Nursery Road
  5. Mail Stop C425
  6. Linthicum
  7. MD 21090
  8. USA

 

  1. Marina Putti
  2. CNR-SPIN and University of Genova
  3. Dipartimento di Fisica
  4. Via Dodecaneso 33
  5. Genova
  6. Italy

 

  1. Lucio Rossi
  2. CERN—European Organization for Nuclear Research
  3. Technology Department
  4. Route de Meyrin
  5. Meyrin
  6. Switzerland

 

  1. Hannes Rotzinger
  2. Karlsruher Institut für Technologie
  3. Physikalisches Institut
  4. Wolfgang-Gaede-Straße 1
  5. D-76131 Karlsruhe
  6. Germany

 

  1. Steven T. Ruggiero
  2. University of Notre Dame
  3. Department of Physics
  4. Nieuwland Science Hall
  5. Notre Dame
  6. IN 46556
  7. USA

 

  1. Jean-Claude Sabonnadiere
  2. Domaine Universitaire
  3. G2ELAB (Grenoble Institute of Technology, UJF, CNRS), ENSE3
  4. Saint Martin d'Heres
  5. France

 

  1. Klaus Schlenga
  2. Bruker EAS
  3. Ehrichstraße 10
  4. D-63450 Hanau
  5. Germany

 

  1. Matthias Schmelz
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Gunar Schroeder
  2. Gemeinnützige Gesellschaft mbH
  3. ILK Dresden
  4. Institut für Luft- und Kältetechnik
  5. Bertolt-Brecht-Allee 20
  6. D-01309 Dresden
  7. Germany

 

  1. Thomas Schurig
  2. Physikalisch-Technische Bundesanstalt (PTB)
  3. Cryophysics and Spectrometry
  4. Abbestr 2-12
  5. D-10587 Berlin
  6. Germany

 

  1. Paul Seidel
  2. Friedrich Schiller University Jena
  3. Institute of Solid State Physics
  4. Helmholtzweg 5
  5. D-07743 Jena
  6. Germany

 

  1. Tengming Shen
  2. Fermi National Accelerator Laboratory
  3. Magnet Systems Department
  4. Wilson Street & Kirk Road
  5. %P.O Box 500, M.S. 315
  6. Batavia
  7. IL 60510
  8. USA

 

  1. Michael Siegel
  2. Karlsruhe Institute of Technology
  3. Department of Electrical Engineering and Information Technology
  4. Institute of Micro- und Nanoelectronic Systems
  5. Hertzstraße 16
  6. D-76187 Karlsruhe
  7. Germany

 

  1. Frederic Sirois
  2. Polytechnique Montreal
  3. C.P 6079, succ. centre-ville
  4. Montreal, QC, H3C 3A7
  5. Canada

 

  1. Liliana Stan
  2. Los Alamos National Laboratory
  3. Center for Integrated Nanotechnologies
  4. MPA-CINT, MS K771
  5. Los Alamos
  6. NM 87545
  7. USA

 

and

 

  1. Argonne National Laboratory
  2. Center for Nanoscale Materials
  3. South Cass Avenue, Building 440
  4. Argonne
  5. IL 60439-4806
  6. USA

 

  1. Ronny Stolz
  2. Leibniz Institute of Photonic Technology
  3. Department Quantum Detection
  4. Albert-Einstein-Street 9
  5. D-07745 Jena
  6. Germany

 

  1. Keiichi Tanabe
  2. International Superconductivity Technology Center
  3. Superconductivity Research Laboratory
  4. 2-11-19 Minowa-cho
  5. Kohoku-ku
  6. Yokohama
  7. Kanagawa 223-0051
  8. Japan

 

  1. Saburo Tanaka
  2. Toyohashi University of Technology
  3. Tempaku-cho
  4. 441-8580 Toyohashi
  5. Aichi
  6. Japan

 

  1. Pascal Tixador
  2. Domaine Universitaire
  3. G2ELAB (Grenoble Institute of Technology, UJF, CNRS), ENSE3
  4. Saint Martin d'Heres
  5. France

 

  1. Hannes Toepfer
  2. Technische Universität Ilmenau
  3. Theoretische Elektrotechnik
  4. PF 10 05 65
  5. D-98684 Ilmenau
  6. Germany

 

  1. Masayoshi Tonouchi
  2. Osaka University
  3. Institute of Laser Engineering
  4. 2-6 Yamada-Oka
  5. Suita-city
  6. Osaka 565-0871
  7. Japan

 

  1. Matteo Tropeano
  2. Columbus Superconductors, S.p.A.
  3. Via delle Terre Rosse 30
  4. Genova
  5. Italy

 

  1. Wolfgang Vodel
  2. Friedrich Schiller University Jena
  3. Institute of Solid State Physics
  4. Helmholtzweg 5
  5. D-07743 Jena
  6. Germany

 

and

 

  1. Helmholtz Institute Jena
  2. Fröbelstieg 3
  3. D-07743 Jena
  4. Germany

 

  1. Huabing Wang
  2. National Institute for Materials Science (NIMS)
  3. Superconducting Properties Unit
  4. 1-2-1 Sengen
  5. Tsukuba 3050047
  6. Japan

 

  1. Martin Weides
  2. Karlsruher Institut für Technologie
  3. Physikalisches Institut
  4. Wolfgang-Gaede-Straße 1
  5. D-76131 Karlsruhe
  6. Germany

 

  1. Frank N. Werfel
  2. Adelwitz Technologiezentrum GmbH (ATZ)
  3. Naundorfer Street 29
  4. D-04860 Torgau
  5. Germany

 

  1. Martin N. Wilson
  2. Lower Radley
  3. OX14 3AY Abingdon
  4. United Kingdom

 

  1. Stuart C. Wimbush
  2. Victoria University of Wellington
  3. Robinson Research Institute
  4. PO Box 600
  5. Gracefield Road Lower Hutt 5010
  6. Wellington 6140
  7. New Zealand

 

  1. Thomas Wolf
  2. Karlsruhe Institute of Technology
  3. Institute of Solid State Physics
  4. Hermann-von-Helmholtz-Platz 1
  5. D-76021 Karlsruhe
  6. Germany

 

  1. Roger Wördenweber
  2. Forschungszentrum Jülich GmbH
  3. Peter Grünberg Institute (PGI-8) and JARA-Fundamentals of Future Information Technology
  4. Leo-Brandt-Straße
  5. D-52425 Jülich
  6. Germany

 

  1. Jarek Wosik
  2. University of Houston
  3. Department of Electrical and Computer Engineering, and Texas Center for Superconductivity
  4. Houston
  5. TX 77004
  6. USA

 

  1. Alexander B. Zorin
  2. Physikalisch-Technische Bundesanstalt
  3. Quantenelektronik
  4. Bundesallee 100
  5. D-38116 Braunschweig
  6. Germany

 

and

 

  1. Moscow State University
  2. Skobeltsyn Institute of Nuclear Physics
  3. Moscow
  4. Russia

 

  1. Gertrud Zwicknagl
  2. Technische Universität Braunschweig
  3. Institut für Mathematische Physik
  4. Mendelssohnstraße 3
  5. D-38106 Braunschweig
  6. Germany