Cover: Electrospun Materials and Their Allied Applications Edited by Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri

Scrivener Publishing

100 Cummings Center, Suite 541J

Beverly, MA 01915-6106

 

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

Electrospun Materials and Their Allied Applications

 

 

 

Edited by

Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri

 

 

 

 

 

 

cc08f001

Preface

The electrospinning technique uses an electrically charged jet of polymer solution or melt of both natural and synthetic polymers to produce fibers of submicron to nanometer size. Fibers with various morphologies and structures can be easily prepared by electrospinning by altering the processing parameters. Electrospinning is a voltage-driven process by which a wide range of materials, including polymers, biomaterials, inorganic sol– gels, colloidal particles, additives like fillers, plasticizers, etc., can be spun into nanofibers. Electrospinning can be traced back to the 17th century, about 400 years ago, when William Gilbert observed the deformation of a liquid droplet into conical form when a piece of statically charged amber was placed closer to the liquid. Later, in the early 18th century, John Zeleny worked on the mathematical model of the effect of electric field on the liquid meniscus. In 1934, Formhals filed his first patent for drawing artificial threads. In the 1960s, Taylor expanded the work of William Gilbert by using conducting fluid and showed the conical shape of the droplet in the presence of the electric field, hence named a Taylor cone. After the 1960s, researchers started studying the morphology, structure, operation parameters, etc., of electrospun nanofibers, which are still being expanded upon for their applications as smart materials. Despite the fact of the technology having already been developed, the surge in the utilization of electrospinning for the production of fibrous materials by both academia and industry intensified during the last decade. A variety of nanofibers can be prepared by electrospinning technology for a wide range of applications in tissue engineering, drug delivery, biotechnology, wound healing, environmental protection, energy harvesting and storage, electronics and defense, and security purposes. The materials possess higher mechanical performance, large surface area-to-volume ratio, and functional properties.

The aim of this edition of Electrospun Materials and Their Allied Applications is to explore the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials. This book includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems, and so on. The electrospun materials have applications in areas such as energy storage, catalysis, biomedical, separation, adsorption, and water treatment technologies. The book emphasizes the enhanced sustainable properties of electrospun materials, with the challenges and prospectives being discussed in detail. The chapters are written by top-class researchers and experts from throughout the world. This book is envisioned for faculty members and students of engineering, materials science, engineers, and materials designers who need to consider the morphological design of materials for versatile applications. Based on thematic topics, this edition contains the following 17 chapters:

Chapter 1 discusses the current and advanced electrospinning fabrication strategies. The technological limitations of conventional strategies and their reduced ability to achieve 3D structures are also discussed. Advanced strategies, such as melt electrospinning, near-field electrospinning, electroblowing, hybrid structures, cell electrospinning, and in situ electrospinning, are highlighted with respect to the way they may contribute to circumvent the limitations of conventional strategies.

Chapter 2 discusses the development of electrospinning techniques and provides information about the theory of electrospinning. The setup and configurations of electrospinning are discussed in detail for the fabrication of nanofibers. The effect of processing conditions on geometry, morphology, and functionality of nanofibers are also presented.

Chapter 3 briefly provides information about certain physical characterization techniques that are relevant with respect to electrospinning and the changes observed in the physical properties of the material.

Chapter 4 focuses on the applications of electrospun materials in areas such as catalysis. Several reactions such as oxidation, reduction, and degradation in the field of energy and environmental applications are mentioned, in which the presence of heterogeneous catalyst is prepared by electrospinning technique. This chapter investigates recent approaches for these specific applications of catalysis.

Chapter 5 discusses developments in the packaging industry, specifically food packaging; the science of electrospinning and parameters that influence the process are presented, and, after that, electrospun materials in the food packaging industry and their application thereof.

Chapter 6 summarizes the advanced applications of distinct electrospun materials in the growing water treatment sector. Covered in this chapter are various organic/biomaterials as well as inorganic/synthetic materials with improved properties due to electrospinning procedure. It describes the power of electrospun materials for resolving the problem of hazardous water contaminants like heavy metal ions, dyes, microbial growth, and pharmaceutical waste (antibiotics), along with problems related to oil spills.

Chapter 7 summarizes the design, manufacturing, and recent developments of electrospun nanofibers with tailorable surface wettability for oily wastewater purification. The chapter also discusses various electrospun nanofibrous materials having different mechanisms for oil-in-water separation and their challenges and prospects.

Chapter 8 describes various industrial applications of electrospun materials, including the transfer of electrospun materials from research laboratories to industries for commercialization. The main focus is on the applications of electrospun materials in different industrial fields such as biomedical, filtration, textiles, sensors, protective clothing, energy harvesting, and storage devices.

Chapter 9 highlights electrospinning technology for the fabrication of electrospun materials and their advantages and wide range of potential applications. Due to the fast-growing problem of infections and the prevalence of antibiotic-resistance microbes, the focus is on electrospun materials with antimicrobial property.

Chapter 10 discusses the various applications of electrospun materials in gene delivery. It emphasizes the delivery of genes, DNA, RNA, peptides, antibodies, growth factors, and many drugs by electrospun materials, including nanofibers. The major applications that are elaborated on include their role in tissue engineering, bone regeneration, wound healing, stem cell treatment, blood vessel growth, dentistry, gene expression/silencing, and controlled release of biomolecules/drugs.

Chapter 11 presents information on the natural polymers and how they can be processed by electrospinning to obtain properties required by target applications. The role of methods in the development of electrospun materials is studied in correlation with the way in which they can be adapted for bioinspired applications.

Chapter 12 discusses the various applications of electrospun materials in various sectors like air, water, and noise pollution control. Some of the important applications of electrospun materials in areas such as solar cells, energy harvesters, batteries, supercapacitors, and sensor diodes are extensively discussed along with their use in textiles and at industrial levels. The main focus is on the application areas of these materials for a wider explanation of the numerous studies reported in the literature and inventories.

Chapter 13 details the main concepts involved in the electrospinning technique, discusses the parameters that influence the morphology of nanofibers, and presents the main advances related to the process and the applications that have been highlighted in recent years.

Chapter 14 outlines the synthesis of sorptive mats by electrospinning methods for use in the filtration processes to eradicate contaminants predominantly in wastewater and terrains for the alleviation of environmental pollution. Recent developments in the manufacturing of new electrospun mats for use as sorbents in the purification processes and the in-depth mechanistic binding between sorptive mats and unwanted impurities during filtration are covered.

Chapter 15 elaborates on the recent development of the electrospun nano-fiber-based materials in terms of synthesis and application for lithium-ion battery components such as anodes, cathodes, and separators. A short overview of the challenges and prospects of electrospun nanofibers for lithium-ion battery components is also presented.

Chapter 16 summarizes the employment of a robust electrospinning technique in membrane fabrication for varied applications. Performance of the same is diversified by utilizing stimuli-responsive/shape memory materials, which react to triggers from the external environment with a widened scope in biomedical treatment, fuel cells, filtration, etc.

Chapter 17 discusses the classification of antibacterial nanofibers based on biodegradability, which includes drugs such as synthetic drugs, natural drugs, or nanoparticle-embedded biodegradable and non-biodegradable nanofibers with applications. The ideal design of antibacterial nanofibers based on comparative study of recently developed antibacterial nanofibers is also reported in the chapter.

Editors

Inamuddin

Rajender Boddula

Mohd Imran Ahamed

Abdullah M. Asiri

December 2019