Details

Process Systems and Materials for CO2 Capture


Process Systems and Materials for CO2 Capture

Modelling, Design, Control and Integration
1. Aufl.

von: Athanasios I. Papadopoulos, Panos Seferlis

215,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.03.2017
ISBN/EAN: 9781119106425
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through:</p> <ul> <li>Modeling of materials and processes based on chemical and physical principles</li> <li>Design of materials and processes based on systematic optimization methods</li> <li>Utilization of advanced control and integration methods in process and plant-wide operations</li> </ul> <p>The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc.</p> <p><i>Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration</i> should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.</p>
<p>About the Editors xvii</p> <p>List of Contributors xix</p> <p>Preface xxvii</p> <p><b>Section 1 Modelling and Design of Materials 1</b></p> <p><b>1 The Development of a Molecular Systems Engineering Approach to the Design of Carbon?–capture Solvents 3<br /></b><i>Edward Graham, Smitha Gopinath, Esther Forte, George Jackson, Amparo Galindo, and Claire S. Adjiman</i></p> <p>1.1 Introduction 3</p> <p>1.2 Predictive Thermodynamic Models for the Integrated Molecular and Process Design of Physical Absorption Processes 6</p> <p>1.3 Describing Chemical Equilibria with SAFT 16</p> <p>1.4 Integrated Computer?–aided Molecular and Process Design using SAFT 24</p> <p>1.5 Conclusions 29</p> <p>List of Abbreviations 30</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>2 Methods and Modelling for Post?-combustion CO2 Capture 43<br /></b><i>Philip Fosbøl, Nicolas von Solms, Arne Gladis, Kaj Thomsen, and Georgios M. Kontogeorgis</i></p> <p>2.1 Introduction to Post?]combustion CO2 Capture: The Role of Solvents and Some Engineering Challenges 43</p> <p>2.2 Extended UNIQUAC: A Successful Thermodynamic Model for CCS Applications 49</p> <p>2.3 CO2 Capture using Alkanolamines: Thermodynamics and Design 60</p> <p>2.4 CO2 Capture using Ammonia: Thermodynamics and Design 61</p> <p>2.5 New Solvents: Enzymes, Hydrates, Phase Change Solvents 62</p> <p>2.6 Pilot Plant Studies: Measurements and Modelling 69</p> <p>2.7 Conclusions and Future Perspectives 69</p> <p>List of Abbreviations 74</p> <p>Acknowledgements 74</p> <p>References 74</p> <p><b>3 Molecular Simulation Methods for CO2 Capture and Gas Separation with Emphasis on Ionic Liquids 79<br /></b><i>Niki Vergadou, Eleni Androulaki, and Ioannis G. Economou</i></p> <p>3.1 Introduction 79</p> <p>3.2 Molecular Simulation Methods for Property Calculations 83</p> <p>3.3 Force Fields 85</p> <p>3.4 Results and Discussion: The Case of the IOLICAP Project 87</p> <p>3.5 Future Outlook 101</p> <p>List of Abbreviations 102</p> <p>Acknowledgments 103</p> <p>References 103</p> <p><b>4 Thermodynamics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 113<br /></b><i>Peter T. Frailie, Jorge M. Plaza, and Gary T. Rochelle</i></p> <p>4.1 Introduction 113</p> <p>4.2 Model Description 114</p> <p>4.3 Sequential Regression Methodology 115</p> <p>4.4 Model Regression 115</p> <p>4.5 Conclusions 134</p> <p>List of Abbreviations 134</p> <p>Acknowledgements 134</p> <p>References 135</p> <p><b>5 Kinetics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 137<br /></b><i>Peter T. Frailie and Gary T. Rochelle</i></p> <p>5.1 Introduction 137</p> <p>5.2 Methodology 138</p> <p>5.3 Results 143</p> <p>5.4 Conclusions 150</p> <p>List of Abbreviations 151</p> <p>Acknowledgements 151</p> <p>References 151</p> <p><b>6 Uncertainties in Modelling the Environmental Impact of Solvent Loss through Degradation for Amine Screening Purposes in Post?]combustion CO2 Capture 153<br /></b><i>Sara Badr, Stavros Papadokonstantakis, Robert Bennett, Graeme Puxty, and Konrad Hungerbuehler</i></p> <p>6.1 Introduction 153</p> <p>6.2 Oxidative Degradation 156</p> <p>6.3 Environmental Impacts of Solvent Production 165</p> <p>6.4 Conclusions and Outlook 167</p> <p>List of Abbreviations 168</p> <p>References 169</p> <p><b>7 Computer?]aided Molecular Design of CO2 Capture Solvents and Mixtures 173<br /></b><i>Athanasios I. Papadopoulos, Theodoros Zarogiannis, and Panos Seferlis</i></p> <p>7.1 Introduction 173</p> <p>7.2 Overview of Associated Literature 176</p> <p>7.3 Optimization?-based Design and Selection Approach 178</p> <p>7.4 Implementation 183</p> <p>7.5 Results and Discussion 187</p> <p>7.6 Conclusions 196</p> <p>List of Abbreviations 196</p> <p>Acknowledgements 197</p> <p>References 197</p> <p><b>8 Ionic Liquid Design for Biomass?-based Tri?-generation System with Carbon Capture 203<br /></b><i>Fah Keen Chong, Viknesh Andiappan, Fadwa T. Eljack, Dominic C. Y. Foo, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng</i></p> <p>8.1 Introduction 203</p> <p>8.2 Formulations to Design Ionic Liquid for BECCS 205</p> <p>8.3 An Illustrative Example 212</p> <p>8.4 Conclusions 221</p> <p>List of Abbreviations 222</p> <p>References 225</p> <p><b>Section 2 From Materials to Process Modelling, Design and Intensification 229</b></p> <p><b>9 Multi?-scale Process Systems Engineering for Carbon Capture, Utilization, and Storage: A Review 231<br /></b><i>M. M. Faruque Hasan</i></p> <p>9.1 Introduction 231</p> <p>9.2 Multi?-scale Approaches for CCUS Design and Optimization 233</p> <p>9.3 Hierarchical Approaches 234</p> <p>9.4 Simultaneous Approaches 237</p> <p>9.5 Enabling Methods, Challenges, and Research Opportunities 242</p> <p>List of Abbreviations 243</p> <p>References 244</p> <p><b>10 Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation 249<br /></b><i>Xuezhong He, Daniel R. Nieto, Arne Lindbråthen, and May?-Britt Hägg</i></p> <p>10.1 Introduction 249</p> <p>10.2 Membranes for Gas Separation 250</p> <p>10.3 Molecular Modeling of Gas Separation in Membranes 255</p> <p>10.4 Process Simulation of Membranes for CO2 Capture 260</p> <p>10.5 Future Perspectives 273</p> <p>List of Abbreviations 274</p> <p>Acknowledgments 276</p> <p>References 276</p> <p><b>11 Post?-combustion CO2 Capture by Chemical Gas–Liquid Absorption: Solvent Selection, Process Modelling, Energy Integration and Design Methods 283<br /></b><i>Thibaut Neveux, Yann Le Moullec, and Éric Favre</i></p> <p>11.1 Introduction 283</p> <p>11.2 Solvent Influence 284</p> <p>11.3 Process Modelling 286</p> <p>11.4 Process Integration 291</p> <p>11.5 Design Method 300</p> <p>11.6 Conclusion 306</p> <p>List of Abbreviations 308</p> <p>References 308</p> <p><b>12 Innovative Computational Tools and Models for the Design, Optimization and Control of Carbon Capture Processes 311<br /></b><i>David C. Miller, Deb Agarwal, Debangsu Bhattacharyya, Joshua Boverhof , Yang Chen, John Eslick, Jim Leek, Jinliang Ma, Priyadarshi Mahapatra, Brenda Ng, Nikolaos V. Sahinidis, Charles Tong, and Stephen E. Zitney</i></p> <p>12.1 Overview 311</p> <p>12.2 Advanced Computational Frameworks 313</p> <p>12.3 Case Study: Solid Sorbent Carbon Capture System 326</p> <p>12.4 Summary 335</p> <p>Acknowledgment 338</p> <p>List of Abbreviations 338</p> <p>References 339</p> <p><b>13 Modelling and Optimization of Pressure Swing Adsorption (PSA) Processes for Post?]combustion CO2 Capture from Flue Gas 343<br /></b><i>George N. Nikolaidis, Eustathios S. Kikkinides, and Michael C. Georgiadis</i></p> <p>13.1 Introduction 343</p> <p>13.2 Mathematical Model Formulation 346</p> <p>13.3 PSA/VSA Simulation Case Studies 352</p> <p>13.4 PSA/VSA Optimization Case Study 359</p> <p>13.5 Conclusions 362</p> <p>List of Abbreviations 365</p> <p>Acknowledgements 366</p> <p>References 367</p> <p><b>14 Joule Thomson Effect in a Two?-dimensional Multi?]component Radial Crossflow Hollow Fiber Membrane Applied for CO2 Capture in Natural Gas Sweetening 371<br /></b><i>Serene Sow Mun Lock, Kok Keong Lau, Azmi Mohd Shariff, and Yin Fong Yeong</i></p> <p>14.1 Introduction 371</p> <p>14.2 Methodology 373</p> <p>14.3 Results and Discussion 384</p> <p>14.4 Conclusion 393</p> <p>List of Abbreviations 394</p> <p>Acknowledgments 394</p> <p>References 394</p> <p><b>15 The Challenge of Reducing the Size of an Absorber Using a Rotating Packed Bed 399<br /></b><i>Ming?]Tsz Chen, David Shan Hill Wong, and Chung Sung Tan</i></p> <p>15.1 Motivation for Size Reduction 399</p> <p>15.2 Rotating Packed Bed Technology 401</p> <p>15.3 Experimental Work on CO2 Capture Using a Rotating Packed Bed 405</p> <p>15.4 Modeling of CO2 Capture using a Rotating Packed Bed 409</p> <p>15.5 Design of Rotating Packed Bed Absorbers and Real Work Comparison to Regular Packed Absorbers 410</p> <p>15.6 Conclusions 417</p> <p>List of Abbreviations 417</p> <p>References 418</p> <p><b>Section 3 Process Operation and Control 425</b></p> <p><b>16 Plantwide Design and Operation of CO2 Capture Using Chemical Absorption 427<br /></b><i>David Shan Hill Wong and Shi?]Shang Jang</i></p> <p>16.1 Introduction 427</p> <p>16.2 The Basic Process 428</p> <p>16.3 Solvent Selection 429</p> <p>16.4 Energy Consumption Targets 429</p> <p>16.5 Steady?-state Process Modeling 431</p> <p>16.6 Conceptual Process Integration 432</p> <p>16.7 Column Internals 432</p> <p>16.8 Dynamic Modeling 433</p> <p>16.9 Plantwide Control 434</p> <p>16.10 Flexible Operation 434</p> <p>16.11 Water and Amine Management 435</p> <p>16.12 SOx Treatment 436</p> <p>16.13 Monitoring 436</p> <p>16.14 Conclusions 437</p> <p>List of Abbreviations 437</p> <p>References 437</p> <p><b>17 Multi?-period Design of Carbon Capture Systems for Flexible Operation 447<br /></b><i>Nial Mac Dowell and Nilay Shah</i></p> <p>17.1 Introduction 447</p> <p>17.2 Evaluation of Flexible Operation 451</p> <p>17.3 Scenario Comparison 457</p> <p>17.4 Conclusions 459</p> <p>List of Abbreviations 460</p> <p>Acknowledgements 460</p> <p>References 461</p> <p><b>18 Improved Design and Operation of Post?-combustion CO2 Capture Processes with Process Modelling 463<br /></b><i>Adekola Lawal, Javier Rodriguez, Alfredo Ramos, Gerardo Sanchis, Mario Calado, Nouri Samsatli, Eni Oko, and Meihong Wang</i></p> <p>18.1 Introduction 463</p> <p>18.2 The gCCS Whole?-chain System Modelling Environment 464</p> <p>18.3 Typical Process Design Considerations in a Simulation Study 467</p> <p>18.4 Safety Considerations: Anticipating Hazards 477</p> <p>18.5 Process Operating Considerations 479</p> <p>18.6 Conclusions 497</p> <p>List of Abbreviations 498</p> <p>References 498</p> <p><b>19 Advanced Control Strategies for IGCC Plants with Membrane Reactors for CO2 Capture 501<br /></b><i>Fernando V. Lima, Xin He, Rishi Amrit, and Prodromos Daoutidis</i></p> <p>19.1 Introduction 501</p> <p>19.2 Modelling Approach 503</p> <p>19.3 Design and Simulation Conditions 507</p> <p>19.4 Model Predictive Control Strategies 508</p> <p>19.5 Closed?-loop Simulation Results 512</p> <p>19.6 Conclusions 518</p> <p>List of Abbreviations 518</p> <p>Acknowledgements 519</p> <p>References 519</p> <p><b>20 An Integration Framework for CO2 Capture Processes 523<br /></b><i>M. Hossein Sahraei and Luis A. Ricardez-Sandoval</i></p> <p>20.1 Introduction 523</p> <p>20.2 Automation Framework and Syntax 525</p> <p>20.3 CO2 Capture Plant Model 528</p> <p>20.4 Case Studies 530</p> <p>20.5 Conclusions 540</p> <p>List of Abbreviations 541</p> <p>References 541</p> <p><b>21 Operability Analysis in Solvent?-based Post?-combustion CO2 Capture Plants 545<br /></b><i>Theodoros Damartzis, Athanasios I. Papadopoulos, and Panos Seferlis</i></p> <p>21.1 Introduction 545</p> <p>21.2 Framework for the Analysis of Operability 548</p> <p>21.3 Framework Implementation 552</p> <p>21.4 Results and Discussion 556</p> <p>21.5 Conclusions 566</p> <p>List of Abbreviations 567</p> <p>Acknowledgments 567</p> <p>References 567</p> <p><b>Section 4 Integrated Technologies 571</b></p> <p><b>22 Process Systems Engineering for Optimal Design and Operation of Oxycombustion 573<br /></b><i>Alexander Mitsos</i></p> <p>22.1 Introduction 573</p> <p>22.2 Pressurized Oxycombustion of Coal 575</p> <p>22.3 Membrane?-based Processes 578</p> <p>22.4 Conclusions and Future Work 585</p> <p>List of Abbreviations 585</p> <p>Acknowledgments 585</p> <p>References 586</p> <p><b>23 Energy Integration of Processes for Solid Looping CO2 Capture Systems 589<br /></b><i>Pilar Lisbona, Yolanda Lara, Ana Martínez, and Luis M. Romeo</i></p> <p>23.1 Introduction 589</p> <p>23.2 Internal Integration for Energy Savings 592</p> <p>23.3 External Integration for Energy Use 597</p> <p>23.4 Process Symbiosis 601</p> <p>23.5 Final Remarks 605</p> <p>List of Abbreviations 605</p> <p>References 605</p> <p><b>24 Process Simulation of a Dual?-stage Selexol Process for Pre?-combustion Carbon Capture at an Integrated Gasification Combined Cycle Power Plant 609<br /></b><i>Hyungwoong Ahn</i></p> <p>24.1 Introduction 609</p> <p>24.2 Configuration of an Absorption Process for Pre?-combustion Carbon Capture 610</p> <p>24.3 Solubility Model 616</p> <p>24.4 Conventional Dual?-stage Selexol Process 619</p> <p>24.5 Unintegrated Solvent Cycle Design 624</p> <p>24.6 95% Carbon Capture Efficiency 625</p> <p>24.7 Conclusions 626</p> <p>List of Abbreviations 627</p> <p>References 627</p> <p><b>25 Optimized Lignite?-fired Power Plants with Post?-combustion CO2 Capture 629<br /></b><i>Emmanouil K. Kakaras, Antonios K. Koumanakos, and Aggelos F. Doukelis</i></p> <p>25.1 Introduction 629</p> <p>25.2 Reducing the Energy Efficiency Penalty 630</p> <p>25.3 Optimized Plants with Amine Scrubbing: Greenfield Case 631</p> <p>25.4 Oxyfuel and Amine Scrubbing Hybrid CO2 Capture 635</p> <p>25.5 Conclusions 645</p> <p>List of Abbreviations 645</p> <p>References 645</p> <p>Index 649</p>
<p> <b>Edited by</b><BR> <b>ATHANASIOS I. PAPADOPOULOS,</b> Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Greece <p><b>PANOS SEFERLIS,</b> Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece
<p>Computer-aided approaches enable the fast, automated and accurate evaluation of a vast number of process and material characteristics that lead to economically efficient and sustainable CO<sub>2</sub> capture systems. In this context, they offer a promising route to exploit experimental know-how and guide the search for novel and efficient CO<sub>2</sub> capture processes and materials.</p> <p>This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO<sub>2</sub> capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: <ul> <li>modelling of materials and processes based on chemical and physical principles</li> <li>design of materials and processes based on systematic optimization methods</li> <li>utilization of advanced control and integration methods in process and plant-wide operations.</li> </ul><br> <p>The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents and membranes, and on processes such as absorption/desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. <p><i>Process Systems and Materials for CO<sub>2</sub> Capture: Modelling, Design, Control and Integration</i> should become the essential introductory resource for researchers and industrial practitioners in the field of CO<sub>2</sub> capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO<sub>2</sub> capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO<sub>2</sub> capture technologies.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €