Details

Process Intensification and Integration for Sustainable Design


Process Intensification and Integration for Sustainable Design


1. Aufl.

von: Dominic C. Y. Foo, Mahmoud M. El-Halwagi

133,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 01.12.2020
ISBN/EAN: 9783527818723
Sprache: englisch
Anzahl Seiten: 344

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry</b></p> <p>Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques.</p> <p><i>Process Intensification and Integration for Sustainable Design</i> starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more.</p> <ul> <li>Covers the many advances and changes in process intensification and integration</li> <li>Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes</li> <li>Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management</li> <li>Offers insightful analysis and integration of reactor and heat exchanger network</li> <li>Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants</li> </ul> <p><i>Process Intensification and Integration for Sustainable Design</i> is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.</p>
<p>Preface xv</p> <p><b>1 Shale Gas as an Option for the Production of Chemicals and Challenges for Process Intensification </b><b>1<br /></b><i>Andrea P. Ortiz-Espinoza and Arturo Jiménez-Gutiérrez</i></p> <p>1.1 Introduction 1</p> <p>1.2 Where Is It Found? 1</p> <p>1.3 Shale Gas Composition 3</p> <p>1.4 Shale Gas Effect on Natural Gas Prices 3</p> <p>1.5 Alternatives to Produce Chemicals from Shale Gas 4</p> <p>1.6 Synthesis Gas 4</p> <p>1.7 Methanol 5</p> <p>1.8 Ethylene 6</p> <p>1.9 Benzene 7</p> <p>1.10 Propylene 7</p> <p>1.11 Process Intensification Opportunities 8</p> <p>1.12 Potential Benefits and Tradeoffs Associated with Process Intensification 10</p> <p>1.13 Conclusions 11</p> <p>References 11</p> <p><b>2 Design and Techno-Economic Analysis of Separation Units to Handle Feedstock Variability in Shale Gas Treatment </b><b>15<br /></b><i>Eric Bohac, Debalina Sengupta, andMahmoud M. El-Halwagi</i></p> <p>2.1 Introduction 15</p> <p>2.2 Problem Statement 16</p> <p>2.3 Methodology 17</p> <p>2.4 Case Study 17</p> <p>2.4.1 Data 18</p> <p>2.4.2 Process Simulations and Economic Evaluation 19</p> <p>2.4.2.1 Changes in Fixed and Variable Costs 20</p> <p>2.4.2.2 Revenue 21</p> <p>2.4.2.3 Economic Calculations 21</p> <p>2.4.3 Safety Index Calculations 22</p> <p>2.5 Discussion 23</p> <p>2.5.1 Process Simulations 23</p> <p>2.5.1.1 Dehydration Process 23</p> <p>2.5.1.2 NGL Recovery Process 23</p> <p>2.5.1.3 Fractionation Train 26</p> <p>2.5.1.4 Acid Gas Removal 26</p> <p>2.5.2 Profitability Assessment 26</p> <p>2.5.3 High Acid Gas Case Economics 30</p> <p>2.5.4 Safety Index Results 30</p> <p>2.5.5 Sensitivity Analysis 32</p> <p>2.5.5.1 Heating Value Cases 33</p> <p>2.5.5.2 NGL Price Cases 34</p> <p>2.6 Conclusions 35</p> <p>Appendices 35</p> <p>2.A Appendix A: Key Parameters for the Dehydration Process 36</p> <p>2.B Appendix B: Key Parameters for the Turboexpander Process 36</p> <p>2.C Appendix C: Key Parameters for the Fractionation Train 37</p> <p>2.D Appendix D: Key Parameters for the Acid Gas Removal System 37</p> <p>References 39</p> <p><b>3 Sustainable Design and Model-Based Optimization of Hybrid RO–PRO Desalination Process </b><b>43<br /></b><i>Zhibin Lu, Chang He, Bingjian Zhang, Qinglin Chen, and Ming Pan</i></p> <p>3.1 Introduction 43</p> <p>3.2 Unit Model Description and Hybrid Process Design 47</p> <p>3.2.1 The Process Description 47</p> <p>3.2.2 Unit Model and Performance Metrics 49</p> <p>3.2.2.1 RO Unit Model 49</p> <p>3.2.2.2 PRO Unit Model 52</p> <p>3.2.3 The RO–PRO Hybrid Processes 54</p> <p>3.2.3.1 Open-Loop Configuration 54</p> <p>3.2.3.2 Closed-Loop Configuration 55</p> <p>3.3 Unified Model-Based Analysis and Optimization 56</p> <p>3.3.1 Dimensionless Mathematical Modeling 56</p> <p>3.3.2 Mathematical Model and Objectives 58</p> <p>3.3.3 Optimization Results and Comparative Analysis 59</p> <p>3.4 Conclusion 62</p> <p>Nomenclature 63</p> <p>References 65</p> <p><b>4 Techno-economic and Environmental Assessment of Ultrathin Polysulfone Membranes for Oxygen-Enriched Combustion </b><b>69<br /></b><i>Serene Sow Mun Lock, Kok Keong Lau, Azmi Mohd Shariff, Yin Fong Yeong, and Norwahyu Jusoh</i></p> <p>4.1 Introduction 69</p> <p>4.2 Numerical Methodology for Membrane Gas Separation Design 70</p> <p>4.3 Methodology 73</p> <p>4.3.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular Scale) 73</p> <p>4.3.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) 75</p> <p>4.3.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes 75</p> <p>4.4 Results and Discussion 77</p> <p>4.4.1 Simulation and Elucidation of Mixed Gas Transport Properties of Ultrathin PSF Membranes (Molecular) 77</p> <p>4.4.2 Simulation of Mathematical Model Interfaced in Aspen HYSYS for Mass and Heat Balance (Mesoscale) 79</p> <p>4.4.3 Design of Oxygen-Enriched Combustion Using Ultrathin PSF Membranes 82</p> <p>4.4.3.1 Membrane Area Requirement 82</p> <p>4.4.3.2 Compressor Power Requirement 83</p> <p>4.4.3.3 Turbine Power Requirement 85</p> <p>4.4.3.4 Economic Parameter 88</p> <p>4.5 Conclusion 90</p> <p>Acknowledgment 91</p> <p>References 91</p> <p><b>5 Process Intensification of Membrane-Based Systems for Water, Energy, and Environment Applications </b><b>97<br /></b><i>Nik A. H.M. Nordin, Zulfan A. Putra, Muhammad R. Bilad, Mohd D. H.Wirzal, Lila Balasubramaniam, Anis S. Ishak, and Sawin Kaur Ranjit Singh</i></p> <p>5.1 Introduction 97</p> <p>5.2 Membrane Electrocoagulation Flocculation for Dye Removal 99</p> <p>5.3 Carbonation Bioreactor for Microalgae Cultivation 102</p> <p>5.4 Forward Osmosis and Electrolysis for Energy Storage and Treatment of Emerging Pollutant 107</p> <p>5.5 Conclusions and Future Perspective 111</p> <p>References 113</p> <p><b>6 Design of Internally Heat-Integrated Distillation Column (HIDiC) </b><b>117<br /></b><i>Vasu Harvindran and Dominic C. Y. Foo</i></p> <p>6.1 Introduction 117</p> <p>6.2 Example and Conceptual Design of Conventional Column 119</p> <p>6.3 Basic Design of HIDiC 120</p> <p>6.4 Complete Design of HIDiC 122</p> <p>6.4.1 Top-Integrated Column 122</p> <p>6.4.2 Bottom-Integrated Column 123</p> <p>6.4.3 Geometrical Analysis for Heat Panels 124</p> <p>6.5 Energy Savings and Economic Evaluation 126</p> <p>6.6 Concluding Thoughts 128</p> <p>References 128</p> <p><b>7 Graphical Analysis and Integration of Heat Exchanger Networks with Heat Pumps </b><b>131<br /></b><i>Minbo Yang and Xiao Feng</i></p> <p>7.1 Introduction 131</p> <p>7.2 Influences of Heat Pumps on HENs 132</p> <p>7.2.1 Case 1 133</p> <p>7.2.2 Case 2 134</p> <p>7.2.3 Case 3 134</p> <p>7.2.4 Case 4 135</p> <p>7.2.5 Case 5 136</p> <p>7.2.6 Case 6 136</p> <p>7.2.7 Case 7 136</p> <p>7.3 Integration of Heat Pump Assisted Distillation in the Overall Process 138</p> <p>7.3.1 Increase of Pinch Temperature 138</p> <p>7.3.2 Decrease of Pinch Temperature 140</p> <p>7.3.3 No Change in Pinch Temperature 141</p> <p>7.3.4 Heat Pump Placement 142</p> <p>7.4 Case Study 145</p> <p>7.5 Conclusion 148</p> <p>References 148</p> <p><b>8 Insightful Analysis and Integration of Reactor and Heat Exchanger Network </b><b>151<br /></b><i>Di Zhang, Guilian Liu, and Xiao Feng</i></p> <p>8.1 Introduction 151</p> <p>8.2 Influence of Temperature Variation on HEN 152</p> <p>8.2.1 Location of Cold and Hot Streams 152</p> <p>8.2.2 Effect of Temperature Variation 153</p> <p>8.3 Relation Among Reactor Parameters 156</p> <p>8.3.1 Relation Among Temperatures, Selectivity, and Conversion of Reactor 157</p> <p>8.3.1.1 CSTR 159</p> <p>8.3.1.2 PFR 159</p> <p>8.3.2 Reactor Characteristic Diagram 160</p> <p>8.4 Coupling Optimization of HEN and Reactor 161</p> <p>8.5 Case Study 163</p> <p>8.6 Conclusions 165</p> <p>References 166</p> <p><b>9 Fouling Mitigation in Heat Exchanger Network Through Process Optimization </b><b>167<br /></b><i>Yufei Wang and Xiao Feng</i></p> <p>9.1 Introduction 167</p> <p>9.2 Operation Parameter Optimization for Fouling Mitigation in HENs 169</p> <p>9.2.1 Description on Velocity Optimization 169</p> <p>9.2.2 Fouling Threshold Model 171</p> <p>9.2.3 Heat Transfer Related Models 172</p> <p>9.2.4 Pressure Drop Related Models 174</p> <p>9.3 Optimization of Cleaning Schedule 175</p> <p>9.4 Application of Backup Heat Exchangers 175</p> <p>9.5 Optimization Constraints and Objective Function 176</p> <p>9.5.1 Optimization Constraints 176</p> <p>9.5.2 Objective Function 177</p> <p>9.5.3 Optimization Algorithm 178</p> <p>9.6 Case Studies 178</p> <p>9.6.1 Case Study 1: Consideration of Velocity Optimization Alone 178</p> <p>9.6.1.1 Optimization Results 180</p> <p>9.6.2 Case Study 2: Simultaneous Consideration of Velocity and Cleaning Schedule Optimization 186</p> <p>9.6.2.1 Constraints for Case Study 188</p> <p>9.6.2.2 Results and Discussion 189</p> <p>9.6.2.3 Considering Backup Heat Exchanger 194</p> <p>9.7 Conclusion 194</p> <p>Acknowledgments 196</p> <p>References 198</p> <p><b>10 Decomposition and Implementation of Large-Scale Interplant Heat Integration </b><b>201<br /></b><i>Runrun Song, Xiao Feng, Mahmoud M. El-Halwagi, and Yufei Wang</i></p> <p>10.1 Introduction 201</p> <p>10.1.1 Reviews and Discussions for Stream Selection 202</p> <p>10.1.2 Reviews and Discussions for Plant Selection 204</p> <p>10.1.3 Reviews and Discussions for Plant Integration 204</p> <p>10.2 Methodology 205</p> <p>10.2.1 Strategy 1 – Overview 205</p> <p>10.2.2 Identification of Heat Sources/Sinks for IPHI from Individual Plants 206</p> <p>10.2.3 Decomposition of a Large-Scale IPHI Problem into Small-Scale Subsections 207</p> <p>10.2.4 Strategy 2 for Indirect IPHI 209</p> <p>10.3 Case Study 212</p> <p>10.3.1 Example 1 212</p> <p>10.3.2 Example 2 215</p> <p>10.4 Conclusion 217</p> <p>References 218</p> <p><b>11 Multi-objective Optimisation of Integrated Heat, Mass and Regeneration Networks with Renewables Considering Economics and Environmental Impact </b><b>221<br /></b><i>So-Mang Kim, Adeniyi J. Isafiade, and Michael Short</i></p> <p>11.1 Introduction 221</p> <p>11.2 Literature Review 222</p> <p>11.2.1 Regeneration in Process Synthesis 222</p> <p>11.2.2 The Analogy of MEN and REN 222</p> <p>11.2.3 Combined Heat and Mass Exchange Networks (CHAMENs) 224</p> <p>11.3 Environmental Impact in Process Synthesis 225</p> <p>11.3.1 Life Cycle Assessment 225</p> <p>11.4 The Synthesis Method and Model Formulation 226</p> <p>11.4.1 Synthesis Approach 227</p> <p>11.4.2 Assumptions 229</p> <p>11.4.3 MINLP Model Formulation 230</p> <p>11.4.3.1 HENS Model Equations 230</p> <p>11.4.3.2 MEN and REN Model Equations 233</p> <p>11.4.3.3 The Combined Economic Objective Function 236</p> <p>11.4.3.4 Initializations and Convergence 239</p> <p>11.5 Case Study 240</p> <p>11.5.1 H2S Removal 240</p> <p>11.5.1.1 Synthesis of MEN (The First Step) 242</p> <p>11.5.1.2 Simultaneous Synthesis of MEN and REN (The Second Step) 243</p> <p>11.5.1.3 Simultaneous Synthesis of MEN, REN, and HEN (The Third Step) 244</p> <p>11.5.1.4 Absorption and Regeneration Temperature Optimization 247</p> <p>11.5.1.5 The Synthesis of Combined Model Using MOO 252</p> <p>11.6 Conclusions and Future Works 254</p> <p>References 256</p> <p><b>12 Optimization of Integrated Water and Multi-regenerator Membrane Systems Involving Multi-contaminants: A Water-Energy Nexus Aspect </b><b>261<br /></b><i>Musah Abass and Thokozani Majozi</i></p> <p>12.1 Introduction 261</p> <p>12.2 Problem Statement 263</p> <p>12.3 Model Formulation 263</p> <p>12.3.1 Material Balances for Sources 264</p> <p>12.3.2 Mass and Contaminants Balances for Regeneration Units 265</p> <p>12.3.3 Mass and Contaminant Balances for Permeate and Reject Streams 265</p> <p>12.3.4 Mass and Contaminant Balances for Sinks 266</p> <p>12.3.5 Modeling of the Regeneration Units 266</p> <p>12.3.5.1 Performance of Regeneration Units 266</p> <p>12.3.6 Logical Constraints 267</p> <p>12.3.7 The Objective Function 267</p> <p>12.4 Illustrative Example 268</p> <p>12.5 Conclusion 272</p> <p>Acknowledgments 272</p> <p>12.A Appendix: Detailed Models for the ED and RO Modules 273</p> <p>Nomenclature 280</p> <p>References 282</p> <p><b>13 Optimization Strategies for Integrating and Intensifying Housing Complexes </b><b>285<br /></b><i>Jesús M. Núñez-López, and JoséM. Ponce-Ortega</i></p> <p>13.1 Introduction 285</p> <p>13.2 Methods 288</p> <p>13.2.1 Total Annual Cost for the Integrated System 289</p> <p>13.2.2 FreshWater Consumption 289</p> <p>13.2.3 GHGE Emissions 290</p> <p>13.2.4 Environmental Impact 290</p> <p>13.2.5 Sustainability Return of Investment 293</p> <p>13.2.6 Process Route Healthiness Index 293</p> <p>13.2.7 Multistakeholder Approach 295</p> <p>13.3 Case Study 295</p> <p>13.4 Results 296</p> <p>13.5 Conclusions 296</p> <p>References 299</p> <p><b>14 Sustainable Biomass Conversion Process Assessment </b><b>301<br /></b><i>Eric C. D. Tan</i></p> <p>14.1 Introduction 301</p> <p>14.2 Methodology and Assumptions 302</p> <p>14.3 Results and Discussion 305</p> <p>14.3.1 Environmental Indicators 305</p> <p>14.3.2 Energy Indicators 310</p> <p>14.3.3 Efficiency Indicators 312</p> <p>14.3.4 Economic Indicators 313</p> <p>14.4 Conclusions 314</p> <p>Acknowledgments 316</p> <p>References 317</p> <p>Index 319</p>
<p><b>Dominic Foo</b>, PhD, is a Professor of Process Design and Integration at the University of Nottingham Malaysia Campus, and is the Founding Director for the Centre of Excellence for Green Technologies. He is also a Fellow of the Institution of Chemical Engineers (IChemE), a Chartered Engineer with the UK Engineering Council, and a Professional Engineer with the Board of Engineer Malaysia (BEM).</p> <p><b>Mahmoud El-Halwagi</b>, PhD, is the McFerrin Professor at Artie McFerrin Department of Chemical Engineering, Texas A&M University and the Managing Director of the Texas A&M Engineering Experiment Station’s Gas and Fuel Research Center.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €