Details

Probiotics, Prebiotics and Synbiotics


Probiotics, Prebiotics and Synbiotics

Technological Advancements Towards Safety and Industrial Applications
1. Aufl.

von: Parmjit Singh Panesar, Anil Kumar Anal

142,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 11.01.2022
ISBN/EAN: 9781119701231
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>In <i>Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications</i>, a team of distinguished researchers delivers an insightful exploration of various aspects of functional foods. The book includes information about critical facets of the production of these beneficial compounds, recent technological developments in the field, and their present and future commercial potential. The authors describe their mechanisms of action and their applications in several sectors.</p> <p><i>Probiotics, Prebiotics and Synbiotics</i> is divided into five parts. A general introduction about these substances begins the book and is followed by discussions of common probiotics, prebiotics, and synbiotics. Finally, a treatment of safety issues and regulatory claims, as well as their market potential, rounds out the resource.</p> <p>Perfect for researchers, industry practitioners, and students working in or studying food processing and food microbiology, Probiotics, Prebiotics and Synbiotics is also an invaluable resource for professionals working in the field of food biotechnology.</p>
<p>List of Contributors xvi</p> <p>Preface xxi</p> <p><b>1 Probiotics, Prebiotics and Synbiotics: Opportunities, Health Benefits and Industrial Challenges </b><b>1<br /></b><i>Parmjit Singh Panesar, Anil Kumar Anal and Rupinder Kaur</i></p> <p>1.1 Introduction 1</p> <p>1.2 Probiotics 2</p> <p>1.2.1 Mechanism of Action 3</p> <p>1.3 Prebiotics 4</p> <p>1.3.1 Mechanism of Action 5</p> <p>1.4 Applications of Synbiotics 5</p> <p>1.4.1 Diarrhea 5</p> <p>1.4.2 Lactose Intolerance 5</p> <p>1.4.3 Modulation of the Immune System 6</p> <p>1.4.4 Prevention of Colon Cancer 6</p> <p>1.4.5 Cardiovascular Disease 7</p> <p>1.4.6 Gut–brain Axis: Role of Probiotics 7</p> <p>1.5 Current Outlook and Industrial Challenges 8</p> <p>1.6 Conclusion 8</p> <p>References 9</p> <p><b>2 Isolation, Identification and Characterization of Beneficial Microorganisms from Traditional Fermented Foods </b><b>14<br /></b><i>Phu-Ha Ho, Tuan-Anh Pham, Quoc-Phong Truong, Lan-Huong Nguyen, Tien-Thanh Nguyen, Hang-Thuy Dam, Chinh-Nghia Nguyen, Ha-Anh Nguyen, Quyet-Tien Phi, Hoang Anh Nguyen and Son Chu-Ky</i></p> <p>2.1 Introduction 14</p> <p>2.2 Fermented Food as a Source of Probiotic Microorganisms 14</p> <p>2.2.1 Fermented Food and Health Benefits 14</p> <p>2.2.2 Occurrence of Probiotics in Fermented Foods 16</p> <p>2.2.3 Probiotic Viability in Fermented Food 20</p> <p>2.3 Probiotic Isolation 22</p> <p>2.3.1 Traditional Culture-dependent Approach 22</p> <p>2.3.2 Culturomics Approach 26</p> <p>2.4 Identification of Probiotic Microorganisms 28</p> <p>2.4.1 Phenotypic Identification 28</p> <p>2.4.2 Biochemical Identification 28</p> <p>2.4.3 Molecular Identification 28</p> <p>2.4.3.1 Specific Gene Analysis 28</p> <p>2.4.3.2 Metagenomic Analysis 30</p> <p>2.4.3.3 Proteomics 30</p> <p>2.4.3.4 Metabolomics 30</p> <p>2.5 Characterization of Probiotic Microorganisms 30</p> <p>2.6 Conclusion 47</p> <p>Acknowledgements 47</p> <p>References 47</p> <p><b>3 Lactic Acid Bacteria as Potential Probiotics </b><b>57<br /></b><i>Muhammad Bilal Sadiq</i></p> <p>3.1 Introduction 57</p> <p>3.2 Isolation and Identification of Lactic Acid Bacteria 58</p> <p>3.3 Characterization of Lactic Acid Bacteria 58</p> <p>3.4 Criteria for Selection of Lactic Acid Bacteria as Potential Probiotic Candidates 59</p> <p>3.4.1 Evaluation of Gastric Survival 59</p> <p>3.4.2 Bile Salt Hydrolysis Activity 60</p> <p>3.4.3 Adhesion to Epithelium 61</p> <p>3.4.4 Hydrophobicity 61</p> <p>3.4.5 Aggregation Ability 61</p> <p>3.4.6 Antimicrobial Potential 61</p> <p>3.4.7 Amylolytic Property 63</p> <p>3.4.8 Safety Evaluation 63</p> <p>3.5 Lactic Acid Bacteria as Sources of Probiotics 63</p> <p>3.5.1 Fruits and Vegetables 63</p> <p>3.5.2 Animal Sources 64</p> <p>3.5.3 Dairy Products 64</p> <p>3.6 Health Benefits and Probiotic Mechanisms of Lactic Acid Bacteria 65</p> <p>3.6.1 Host Immunity 65</p> <p>3.6.2 Beneficial Metabolites 65</p> <p>3.6.3 Lactose Intolerance 66</p> <p>3.6.4 Gastric Ulcer 66</p> <p>3.6.5 Obesity and Diabetes Management 66</p> <p>3.6.6 Role of Lactic Acid Bacteria Probiotics in Cancer 67</p> <p>3.7 Industrial Applications of Probiotic Lactic Acid Bacteria 67</p> <p>3.8 Challenges for Lactic Acid Bacteria as Probiotics 67</p> <p>3.9 Conclusion and Future Perspectives 68</p> <p>References 68</p> <p><b>4 Non-Lactic Acid Bacteria as Probiotics and their Functional Roles </b><b>73<br /></b><i>Cíntia Lacerda Ramos, Elizabethe Adriana Esteves, Nayara Martins Zille de Miranda, Lauane Gomes Moreno and Rosane Freitas Schwan</i></p> <p>4.1 Spore-forming Bacteria 73</p> <p>4.1.1 Types, Structure and Formation of Spores 74</p> <p>4.1.1.1 Structure 75</p> <p>4.1.1.2 Spore Formation 76</p> <p>4.1.2 Sources and Probiotic Potential of Spore-forming Strains 77</p> <p>4.1.3 Spore Formers as Gut Microbiota 80</p> <p>4.1.4 Interaction with the Intestinal Cells 82</p> <p>4.2 Propionibacteria 84</p> <p>4.2.1 Phenotypic and Genotypic Characterization 84</p> <p>4.2.2 Probiotic Properties and Potential Mechanisms of Action 86</p> <p>4.2.2.1 Immunomodulation 86</p> <p>4.2.2.2 Microbiota Modulation 89</p> <p>4.2.2.3 Cancer Modulation 89</p> <p>4.3 Conclusion and Future Trends 90</p> <p>References 91</p> <p><b>5 Yeasts as Probiotics and their Functional Roles </b><b>103<br /></b><i>Giorgia Perpetuini, Yves Waché and Rosanna Tofalo</i></p> <p>5.1 Yeasts: General Considerations and Taxonomy 103</p> <p>5.2 <i>Saccharomyces boulardii </i>105</p> <p>5.3 Mechanism of Action of Yeast Probiotics 107</p> <p>5.4 Health Benefits of Yeast Probiotics 109</p> <p>5.4.1 Probiotic Effects 110</p> <p>5.4.2 Nutritional Effects 111</p> <p>5.5 Other Yeast Strains with Probiotic Potential 112</p> <p>5.6 Encapsulation 113</p> <p>5.7 Conclusion and Future Challenges 114</p> <p>References 115</p> <p><b>6 Determination and Safety Aspects of Probiotic Cultures </b><b>122<br /></b><i>Falguni Patra and Raj Kumar Duary</i></p> <p>6.1 Introduction 122</p> <p>6.2 Assessments of Probiotics in the Gut 123</p> <p>6.2.1 Direct Method 123</p> <p>6.2.2 Indirect Method 125</p> <p>6.3 Dosage for Probiotic Effect 126</p> <p>6.4 Pathogenicity and Inefficiency of Probiotic Culture 126</p> <p>6.4.1 Pathogenicity of Probiotics 126</p> <p>6.4.2 Inefficiency of Probiotics 129</p> <p>6.5 Safety Assessment of Probiotic Cultures 130</p> <p>6.5.1 Current Proposal on Probiotic Safety 131</p> <p>6.5.2 Identification of Individual Strains 134</p> <p>6.5.3 In vitro studies 135</p> <p>6.5.4 Animal Studies 138</p> <p>6.5.5 Human Clinical Studies 140</p> <p>6.5.6 Antibiotic Resistance – the Probability of Transfer of Resistance 145</p> <p>6.5.7 Post-marketing Surveillance – Genotoxic Studies, Toxin and Virulence Factors 148</p> <p>6.6 Conclusion 150</p> <p>References 150</p> <p><b>7 Probiotics in Biodegradation of Microbial Toxins: Principles and Mechanisms </b><b>161<br /></b><i>Ali Akbar, Muhammad Iftikhar Khan and Ghulam Ishaq Khan</i></p> <p>7.1 Microbial Toxins 161</p> <p>7.1.1 Health Benefits 162</p> <p>7.1.2 Mycotoxins and Probiotics 162</p> <p>7.2 Dual Interaction between Probiotics and Microbial Toxins 164</p> <p>7.2.1 Clinical Trials 165</p> <p>7.2.2 Types of Microbial Adsorbents for Mycotoxin Adsorption 165</p> <p>7.2.2.1 Lactic Acid Bacteria 165</p> <p>7.3 Principles and Mechanisms Involved 166</p> <p>7.3.1 Control of Mycotoxins by Yeast 167</p> <p>7.4 Conclusion and Future Prospects 168</p> <p>Acknowledgement 168</p> <p>References 168</p> <p><b>8 Potential of Probiotics as Alternative Sources for Antibiotics in Food Production Systems </b><b>172<br /></b><i>Sarina Pradhan Thapa, Sushil Koirala and Anil Kumar Anal</i></p> <p>8.1 Introduction 172</p> <p>8.2 Use of Antibiotics in the Food System 173</p> <p>8.3 Classification and Mechanism of Use of Antibiotics 174</p> <p>8.4 Mechanism of Probiotic Action 175</p> <p>8.5 Probiotic Approach to Antibiotic Resistance 178</p> <p>8.6 Probiotics as Alternative Sources for Antibiotics: What Is Known So Far 178</p> <p>8.7 Conclusion and Future Prospects 180</p> <p>References 180</p> <p><b>9 Probiotic Cereal-based Food and Beverages, their Production and Health Benefits </b><b>186<br /></b><i>Sujitta Raungrusmee, Simmi Ranjan Kumar and Anil Kumar Anal</i></p> <p>9.1 Introduction 186</p> <p>9.2 Probiotics in Cereal-based Food and Beverages 187</p> <p>9.3 General Information about Probiotics 188</p> <p>9.4 Mechanism/Pathway for Probiotics in Cereal-based Food and Beverages 189</p> <p>9.5 Types of Probiotic in Cereal-based Food and Beverages 191</p> <p>9.6 Traditional and Commercial Probiotic Cereal-based Foods and Beverages 191</p> <p>9.6.1 Borde 191</p> <p>9.6.2 Boza 197</p> <p>9.6.3 Burukutu 197</p> <p>9.6.4 Bushera 197</p> <p>9.6.5 Chicha de jora 197</p> <p>9.6.6 Gowe 198</p> <p>9.6.7 Kenky 198</p> <p>9.6.8 Koko 198</p> <p>9.6.9 Koozh 198</p> <p>9.6.10 Kunun-zaki 198</p> <p>9.6.11 Kvass 198</p> <p>9.6.12 Kwete 199</p> <p>9.6.13 Mageu 199</p> <p>9.6.14 Majewu 199</p> <p>9.6.15 Obiolo 199</p> <p>9.6.16 Ogi 199</p> <p>9.6.17 Pito 200</p> <p>9.6.18 Pozol 200</p> <p>9.6.19 Sobia 200</p> <p>9.6.20 Togwa 201</p> <p>9.6.21 Uji 201</p> <p>9.6.22 Yosa 201</p> <p>9.6.23 Commercially Available Cereal-based Functional Foods 201</p> <p>9.7 Health Benefits 203</p> <p>9.8 Conclusion 209</p> <p>References 209</p> <p><b>10 Microencapsulation of Probiotics and its Potential Industrial Applications </b><b>213<br /></b><i>Suwan Panjanapongchai, Chaichawin Chavapradit and Anil Kumar Anal</i></p> <p>10.1 Introduction 213</p> <p>10.2 Why We Need Microencapsulation 214</p> <p>10.3 Encapsulation Techniques 215</p> <p>10.3.1 Emulsion Technique 215</p> <p>10.3.2 Extrusion Technique 216</p> <p>10.3.3 Coacervation Technique 217</p> <p>10.3.4 Spray Drying 218</p> <p>10.3.5 Ultrasonic Vacuum Spray Dryer 219</p> <p>10.3.6 Freeze Drying 219</p> <p>10.3.7 Spray Freeze Drying 219</p> <p>10.3.8 Spray Chilling 220</p> <p>10.3.9 Fluid Bed Coating 220</p> <p>10.3.10 Electrospraying and Electrospinning 221</p> <p>10.3.11 Impinging Aerosol Technology 222</p> <p>10.3.12 Hybridization method 222</p> <p>10.4 Application of Probiotics in Food Matrices 223</p> <p>10.4.1 Dairy Products 223</p> <p>10.4.1.1 Yoghurt 223</p> <p>10.4.1.2 Cheese 225</p> <p>10.4.1.3 Desserts 225</p> <p>10.4.2 Non-dairy Products 226</p> <p>10.4.2.1 Beverages 226</p> <p>10.4.2.2 Meat Products 226</p> <p>10.4.2.3 Bakery Products 227</p> <p>References 227</p> <p><b>11 Prebiotics and their Role in Functional Food Product Development </b><b>233<br /></b><i>Divyani Panwar, Parmjit Singh Panesar and Anuradha Saini</i></p> <p>11.1 Introduction 233</p> <p>11.2 Sources of Prebiotics: Classification and Characteristics 235</p> <p>11.2.1 Characteristics of Prebiotics 235</p> <p>11.2.2 Classification of Prebiotics and their Sources 235</p> <p>11.2.2.1 Galactooligosaccharides 238</p> <p>11.2.2.2 Fructooligosaccharides 238</p> <p>11.2.2.3 Xylooligosaccharides 239</p> <p>11.2.2.4 Lactulose 239</p> <p>11.2.2.5 Lactosucrose 240</p> <p>11.2.2.6 Inulin 240</p> <p>11.2.2.7 Isomaltosoligosaccharides 240</p> <p>11.3 New and Tailored Prebiotics 241</p> <p>11.3.1 Human Milk Oligosaccharides 241</p> <p>11.3.2 Resistant Starch 242</p> <p>11.3.3 Polyphenols 242</p> <p>11.3.4 Soybean Oligosaccharides 243</p> <p>11.3.5 Lactitol 243</p> <p>11.3.6 Microbial Exopolysaccharides 243</p> <p>11.3.7 Seaweed Polsaccharides 244</p> <p>11.4 Production Methods of Prebiotics 244</p> <p>11.4.1 Galactooligosaccharides 245</p> <p>11.4.2 Fructooligosaccharides 247</p> <p>11.4.3 Xylooligosaccharides 247</p> <p>11.4.4 Lactulose 248</p> <p>11.5 Mechanism of Action 248</p> <p>11.6 Health Benefits of Prebiotics 249</p> <p>11.6.1 Acute Gastroenteritis 249</p> <p>11.6.2 Reduction in Constipation 250</p> <p>11.6.3 Reduced Risk of Colon Cancer 254</p> <p>11.6.4 Obesity 254</p> <p>11.6.5 Diabetes 255</p> <p>11.6.6 Mineral Absorption 255</p> <p>11.6.7 Lipid Metabolism 255</p> <p>11.7 Safety Aspects of Prebiotics 256</p> <p>11.8 Global Status of Prebiotics 256</p> <p>11.9 Conclusion and Future Prospects 258</p> <p>References 259</p> <p><b>12 Galactooligosaccharides as Potential Prebiotics </b><b>272<br /></b><i>Rupinder Kaur and Parmjit Singh Panesar</i></p> <p>12.1 Introduction 272</p> <p>12.2 Galactooligosaccharides 273</p> <p>12.3 Technologies for Synthesis of Galactooligosaccharides 274</p> <p>12.3.1 Chemical Technique for Production of GOS 274</p> <p>12.3.2 Enzymatic Production of GOS 275</p> <p>12.3.2.1 Glycosyltransferases 276</p> <p>12.3.2.2 Glycosidases 276</p> <p>12.4 Biotechnological Strategies for Biotransformation of GOS 277</p> <p>12.4.1 Factors Affecting GOS Production 279</p> <p>12.4.2 Production of GOS using Whole Cells 281</p> <p>12.4.3 Production of GOS using Free Enzyme 286</p> <p>12.4.4 Production of GOS using Immobilized Enzyme 286</p> <p>12.4.5 Improvement in GOS Production 287</p> <p>12.5 Global Status of GOS 288</p> <p>12.6 Applications of GOS as Prebiotics 290</p> <p>12.6.1 Stimulation of Health-promoting Bacteria 292</p> <p>12.6.2 Modulation of Immune System 292</p> <p>12.6.3 Enhancement of Mineral Absorption 293</p> <p>12.6.4 Reduction in the Risk of Colon Cancer 294</p> <p>12.6.5 Inflammatory Bowel Disease 295</p> <p>12.7 Conclusion and Future Prospects 295</p> <p>References 296</p> <p><b>13 Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits </b><b>307<br /></b><i>Orlando de la Rosa, Adriana C. Flores-Gallegos, Juan A. Ascacio-Valdés, Leonardo Sepúlveda, Julio C. Montáñez and Cristóbal N. Aguilar</i></p> <p>13.1 Introduction 307</p> <p>13.2 Chemical Structure and Sources 307</p> <p>13.3 Prebiotic Concept 308</p> <p>13.4 Health-promoting Properties 310</p> <p>13.4.1 Prebiotic Activity 310</p> <p>13.4.2 Influence of Gut Microbiome 310</p> <p>13.4.3 Prevention against Colon Cancer and Immunomodulation 313</p> <p>13.4.4 Impact on Obesity 315</p> <p>13.4.5 Effects on Serum Lipid and Cholesterol Concentrations 315</p> <p>13.4.6 Improving Mineral Adsorption 316</p> <p>13.5 FOS Production 316</p> <p>13.5.1 FOS Formation Kinetics 318</p> <p>13.5.2 Biotechnological Production of FOS 320</p> <p>13.5.3 Enzymatic Synthesis 321</p> <p>13.5.4 Whole Cell/One-step Fermentation 322</p> <p>13.5.5 Agro-industrial Residues and Bioresources Employed for FOS Production 323</p> <p>13.6 FOS Purification 323</p> <p>13.6.1 Nanofiltration 323</p> <p>13.6.2 Activated Charcoal 323</p> <p>13.6.3 Microbial Treatments 324</p> <p>13.7 New Developments in Food 325</p> <p>13.8 Conclusion 325</p> <p>Acknowledgements 326</p> <p>References 326</p> <p><b>14 Lactulose: Production and Potential Applications </b><b>338<br /></b><i>Shweta Kumari, Parmjit Singh Panesar, Divyani Panwar and Gisha Singla</i></p> <p>14.1 Introduction 338</p> <p>14.2 Structure and Properties 338</p> <p>14.3 Lactulose Production 340</p> <p>14.3.1 Chemical Methods 341</p> <p>14.3.2 Biotechnological Methods 345</p> <p>14.3.2.1 Enzymatic Methods 345</p> <p>14.3.2.2 Whole Cell Biocatalysts for Lactulose Production 348</p> <p>14.3.3 Electro-activation Method 349</p> <p>14.4 Techniques for the Analysis of Lactulose 349</p> <p>14.5 Applications of Lactulose 350</p> <p>14.5.1 Food Sectors 351</p> <p>14.5.1.1 Lactulose as a Bifidus Factor 351</p> <p>14.5.1.2 Lactulose as a Functional Additive 351</p> <p>14.5.2 Health Sectors 351</p> <p>14.5.2.1 Salmonella Carriers 351</p> <p>14.5.2.2 Constipation and Hepatic Encephalopathy 352</p> <p>14.5.2.3 Anti-endotoxin Effects 352</p> <p>14.5.2.4 Colon Carcinogenesis 352</p> <p>14.5.2.5 Inflammatory Bowel Disease 352</p> <p>14.5.2.6 Tumor Prevention and Immunology 352</p> <p>14.5.2.7 Blood Glucose and Insulin 353</p> <p>14.5.2.8 Diagnostic Applications 353</p> <p>14.6 Future Developments 353</p> <p>14.7 Conclusion 353</p> <p>References 354</p> <p><b>15 Isomaltooligosaccharides as Prebiotics and their Health Benefits </b><b>361<br /></b><i>Waraporn Sorndech</i></p> <p>15.1 Isomaltooligosaccharide Structure, Properties and Market Trends 361</p> <p>15.1.1 IMO: Global Patent Trend 364</p> <p>15.2 Production 365</p> <p>15.2.1 Enzymatic Production 365</p> <p>15.2.1.1 Enzymatic Technologies for Formation of Various IMO Structures 366</p> <p>15.2.1.2 Production Strategies 368</p> <p>15.3 Technological Developments 368</p> <p>15.3.1 Microbial Fermentation and Enzyme Genetic Engineering 368</p> <p>15.3.2 Enzyme Immobilization 369</p> <p>15.3.3 Enzyme Cocktails 369</p> <p>15.3.4 Glucose, Fructose and Linear Oligosaccharide Elimination 369</p> <p>15.4 Health Benefits of IMO 370</p> <p>15.5 Conclusion 372</p> <p>References 372</p> <p><b>16 Starch and its Derivatives as Potential Source of Prebiotics </b><b>378<br /></b><i>Yudi Pranoto</i></p> <p>16.1 Introduction 378</p> <p>16.2 Starch Digestion 379</p> <p>16.3 Starch as a Probiotic Food Source 381</p> <p>16.4 Resistant Starch as a Novel Prebiotic 382</p> <p>16.5 Health Benefits 389</p> <p>16.5.1 Hypoglycemic Effects 391</p> <p>16.5.2 Hypocholesterolemic Effects 391</p> <p>16.5.3 Prevention of Colon Cancer 392</p> <p>16.5.4 Prebiotic Effect 393</p> <p>16.5.5 Preventing Obesity 393</p> <p>16.5.6 Reduction of Gallstone Formation 394</p> <p>16.5.7 Mineral Absorption 395</p> <p>16.6 Future Applications 395</p> <p>16.6.1 Cheese 397</p> <p>16.6.2 Pasta Products 398</p> <p>16.6.3 Battered Fried Products 398</p> <p>16.6.4 Bakery Products 398</p> <p>16.6.5 Baked Goods 399</p> <p>16.6.6 Microencapsulation of Probiotics 399</p> <p>16.7 Production of RS-rich Ingredients 401</p> <p>16.8 Conclusion 403</p> <p>References 404</p> <p><b>17 Gut Microbiome as Potential Source for Prevention of Metabolic-Related Diseases </b><b>407<br /></b><i>Nuntarat Boonlao, Krisha Pant and Anil Kumar Anal</i></p> <p>17.1 Introduction 407</p> <p>17.2 Gut Microbiome and Host Interaction 408</p> <p>17.2.1 Microbial Composition and Colonization 408</p> <p>17.2.2 Non-bacterial Growth in the Intestine 409</p> <p>17.2.3 Next Generation Probiotics 409</p> <p>17.2.4 Host Cell and Microbes – Symbiotic Relationship 410</p> <p>17.3 Gut Microbes and Diet Interaction 410</p> <p>17.3.1 Carbohydrate 413</p> <p>17.3.2 Proteins 413</p> <p>17.3.3 Complex Carbohydrate/Fibers 413</p> <p>17.3.4 Fat 414</p> <p>17.3.5 Probiotics 414</p> <p>17.3.6 Phenolic Compounds 414</p> <p>17.4 Gut Microbiome and Metabolism Regulation 415</p> <p>17.4.1 Gut Microbiome and Brain 415</p> <p>17.4.1.1 Neural Pathways 415</p> <p>17.4.1.2 Metabolites 416</p> <p>17.4.2 Gut Microbiome and Immune System 416</p> <p>17.4.3 Gut and Regulation of Metabolism 416</p> <p>17.4.4 Gut Microbiome and COVID-19 417</p> <p>17.5 Role of Gut Microbiome on Metabolic Diseases 417</p> <p>17.5.1 Gut Barrier and Inflammation 417</p> <p>17.5.2 Microbial Metabolites 419</p> <p>17.5.2.1 Bile Acid 419</p> <p>17.5.2.2 Trimethylamine-<i>N</i>-oxide (TMAO) 420</p> <p>17.6 Gut Microbiome and Metabolic Diseases 421</p> <p>17.6.1 Obesity 421</p> <p>17.6.2 Type 2 Diabetes Mellitus 422</p> <p>17.7 Modulation of Gut Microbiome as Target for Prevention of Metabolic Diseases 423</p> <p>17.7.1 Role of Dietary Intervention 423</p> <p>17.7.2 Role of Probiotics and Prebiotics 424</p> <p>17.8 Possible Mechanisms of Gut Microbiome in Prevention of Metabolic Diseases 425</p> <p>17.8.1 Roles of Short Chain Fatty Acids 425</p> <p>17.8.2 Role of Bile Salt Hydrolase 426</p> <p>17.8.3 Role on Intestinal Barrier Function 427</p> <p>17.9 Conclusion and Future Perspective 427</p> <p>References 427</p> <p><b>18 Overall Safety Considerations and Regulatory Oversight for Probiotics-based Foods and Beverages </b><b>441<br /></b><i>Sushil Koirala, Sarina Pradhan Thapa and Anil Kumar Anal</i></p> <p>18.1 Introduction 441</p> <p>18.2 Safety Considerations 443</p> <p>18.2.1 Non-pathogenicity 443</p> <p>18.2.2 Virulome Factors 445</p> <p>18.2.3 Absence of Antibiotic Resistance 445</p> <p>18.3 Regulatory Framework and Labeling Claims Associated with Probiotic-based Foods and Beverages 446</p> <p>18.3.1 Key Market Insights 448</p> <p>18.3.2 Regional and Country Analysis 449</p> <p>18.3.2.1 USA 449</p> <p>18.3.2.2 Europe 450</p> <p>18.3.2.3 Japan 452</p> <p>18.3.2.4 China 453</p> <p>18.3.2.5 Brazil 453</p> <p>18.3.2.6 Mexico 454</p> <p>18.3.2.7 India 454</p> <p>18.3.2.8 Thailand 454</p> <p>18.3.2.9 Malaysia 455</p> <p>18.3.2.10 Singapore 455</p> <p>18.4 Conclusion and Future Expectations 456</p> <p>References 456</p> <p>Index 462</p>
<p><b>Parmjit Singh Panesar</b> is Dean (Planning & Development) and Professor, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, Punjab, India.</p> <p><B>Anil Kumar Anal</b> is the Professor in Food Engineering and Bioprocess Technology and Food Innovation, Nutrition and Health, Department of Food, Agriculture, and Bioresources at the Asian Institute of Technology (AIT), Thailand.
<p><b>Discover a comprehensive overview of the production and applications of probiotics, prebiotics, and synbiotics</b></p> <p>In<i> Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications,</i> a team of distinguished researchers delivers an insightful exploration of various aspects of functional foods. The book includes information about critical facets of the production of these beneficial compounds, recent technological developments in the field, and their present and future commercial potential. The authors describe their mechanisms of action and their applications in several sectors. <p><i>Probiotics, Prebiotics and Synbiotics</i> is divided into five parts. A general introduction about these substances begins the book and is followed by discussions of common probiotics, prebiotics, and synbiotics. Finally, a treatment of safety issues and regulatory claims, as well as their market potential, rounds out the resource. <p>The book also includes: <ul><li>A thorough introduction to human gut microflora, factors affecting their growth and metabolism, and the relationship between diet and the gut microbiome</li> <li>Comprehensive explorations of the identification and selection of probiotic microorganisms, lactic acid bacteria, Bifidobacteria, and spore forming bacteria</li> <li>Practical discussions of prebiotics as functional foods, including galactooligosaccharides, fructooligosaccharides, and lactulose</li> <li>In-depth examinations of synbiotics as potential functional foods, as well as safety and regulatory claims</li></ul> <p>Perfect for researchers, industry practitioners, and students working in or studying food processing and food microbiology, <i>Probiotics, Prebiotics and Synbiotics</i> is also an invaluable resource for professionals working in the field of food biotechnology.

Diese Produkte könnten Sie auch interessieren:

Keine Produktempfehlungen vorhanden.