Details

Probabilistic Design for Optimization and Robustness for Engineers


Probabilistic Design for Optimization and Robustness for Engineers


1. Aufl.

von: Bryan Dodson, Patrick Hammett, Rene Klerx

78,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.07.2014
ISBN/EAN: 9781118796504
Sprache: englisch
Anzahl Seiten: 272

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Probabilistic Design for Optimization and Robustness</i>:</p> <ul> <li>Presents the theory of modeling with variation using physical models and methods for practical applications on designs more insensitive to variation.</li> <li>Provides a comprehensive guide to optimization and robustness for probabilistic design.</li> <li>Features examples, case studies and exercises throughout.</li> </ul> <p>The methods presented can be applied to a wide range of disciplines such as mechanics, electrics, chemistry, aerospace, industry and engineering. This text is supported by an accompanying website featuring videos, interactive animations to aid the readers understanding.</p>
<p>Preface ix</p> <p>Acknowledgments xi</p> <p><b>1 New product development process 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Phases of new product development 2</p> <p>1.2.1 Phase I—concept planning 3</p> <p>1.2.2 Phase II—product planning 4</p> <p>1.2.3 Phase III—product engineering design and verification 6</p> <p>1.2.4 Phase IV—process engineering 9</p> <p>1.2.5 Phase V—manufacturing validation and ramp-up 10</p> <p>1.3 Patterns of new product development 11</p> <p>1.4 New product development and Design for Six Sigma 13</p> <p>1.4.1 DfSS core objectives 13</p> <p>1.4.2 DfSS methodology 15</p> <p>1.4.3 Embedded DfSS 16</p> <p>1.5 Summary 17</p> <p>Exercises 17</p> <p><b>2 Statistical background for engineering design 19</b></p> <p>2.1 Expectation 19</p> <p>2.2 Statistical distributions 24</p> <p>2.2.1 Normal distribution 24</p> <p>2.2.2 Lognormal distribution 27</p> <p>2.2.3 Weibull distribution 30</p> <p>2.2.4 Exponential distribution 32</p> <p>2.3 Probability plotting 34</p> <p>2.3.1 Probability plotting—lognormal distribution 35</p> <p>2.3.2 Probability plotting—normal distribution 36</p> <p>2.3.3 Probability plotting—Weibull distribution 37</p> <p>2.3.4 Probability plotting—exponential distribution 39</p> <p>2.3.5 Probability plotting with confidence limits 40</p> <p>2.4 Summary 43</p> <p>Exercises 44</p> <p><b>3 Introduction to variation in engineering design 46</b></p> <p>3.1 Variation in engineering design 46</p> <p>3.2 Propagation of error 47</p> <p>3.3 Protecting designs against variation 48</p> <p>3.4 Estimates of means and variances of functions of several variables 51</p> <p>3.5 Statistical bias 59</p> <p>3.6 Robustness 59</p> <p>3.7 Summary 60</p> <p>Exercises 61</p> <p><b>4 Monte Carlo simulation 63</b></p> <p>4.1 Determining variation of the inputs 63</p> <p>4.2 Random number generators 64</p> <p>4.3 Validation 66</p> <p>4.4 Stratified sampling 70</p> <p>4.5 Summary 74</p> <p>Exercises 75</p> <p><b>5 Modeling variation of complex systems 76</b></p> <p>5.1 Approximating the mean, bias, and variance 77</p> <p>5.2 Estimating the parameters of non-normal distributions 81</p> <p>5.3 Limitations of first-order Taylor series approximation for variance 84</p> <p>5.4 Effect of non-normal input distributions 91</p> <p>5.5 Nonconstant input standard deviation 93</p> <p>5.6 Summary 93</p> <p>Exercises 95</p> <p><b>6 Desirability 98</b></p> <p>6.1 Introduction 98</p> <p>6.2 Requirements and scorecards 99</p> <p>6.2.1 Types of requirements 100</p> <p>6.2.2 Design scorecard 101</p> <p>6.3 Desirability—single requirement 103</p> <p>6.3.1 Desirability—one-sided limit 104</p> <p>6.3.2 Desirability—two-sided limit 106</p> <p>6.3.3 Desirability—nonlinear function 107</p> <p>6.4 Desirability—multiple requirements 109</p> <p>6.4.1 Maxi-min total desirability index 114</p> <p>6.5 Desirability—accounting for variation 115</p> <p>6.5.1 Determining desirability—using expected yields 115</p> <p>6.5.2 Determining desirability—using non-mean responses 116</p> <p>6.6 Summary 118</p> <p>Exercises 118</p> <p><b>7 Optimization and sensitivity 123</b></p> <p>7.1 Optimization procedure 123</p> <p>7.2 Statistical outliers 128</p> <p>7.3 Process capability 129</p> <p>7.4 Sensitivity and cost reduction 133</p> <p>7.4.1 Reservoir flow example 134</p> <p>7.4.2 Reservoir flow initial solution 135</p> <p>7.4.3 Reservoir flow initial solution verification 136</p> <p>7.4.4 Reservoir flow optimized with normal horsepower distribution 138</p> <p>7.4.5 Reservoir flow optimized with normal horsepower distribution verification 140</p> <p>7.4.6 Reservoir flow horsepower variation sensitivity 141</p> <p>7.4.7 Reservoir flow horsepower lognormal probability plot 143</p> <p>7.4.8 Reservoir flow horsepower <i>C</i><sub>pk</sub> optimization using a lognormal distribution 144</p> <p>7.5 Summary 149</p> <p>Exercises 150</p> <p><b>8 Modeling system cost and multiple outputs 153</b></p> <p>8.1 Optimizing for total system cost 153</p> <p>8.2 Multiple outputs 158</p> <p>8.2.1 Optimization 159</p> <p>8.2.2 Computing nonconformance 159</p> <p>8.3 Large-scale systems 164</p> <p>8.4 Summary 166</p> <p>Exercises 167</p> <p><b>9 Tolerance analysis 170</b></p> <p>9.1 Introduction 170</p> <p>9.2 Tolerance analysis methods 174</p> <p>9.2.1 Historical tolerancing 174</p> <p>9.2.2 Worst-case tolerancing 175</p> <p>9.2.3 Statistical tolerancing 175</p> <p>9.3 Tolerance allocation 178</p> <p>9.4 Drift, shift, and sorting 179</p> <p>9.5 Non-normal inputs 182</p> <p>9.6 Summary 182</p> <p>Exercises 182</p> <p><b>10 Empirical model development 185</b></p> <p>10.1 Screening 185</p> <p>10.2 Response surface 193</p> <p>10.2.1 Central composite designs 194</p> <p>10.3 Taguchi 200</p> <p>10.4 Summary 200</p> <p>Exercises 201</p> <p><b>11 Binary logistic regression 202</b></p> <p>11.1 Introduction 202</p> <p>11.2 Binary logistic regression 205</p> <p>11.2.1 Types of logistic regression 205</p> <p>11.2.2 Binary versus ordinary least squares regression 206</p> <p>11.2.3 Binary logistic regression and the logit model 208</p> <p>11.2.4 Binary logistic regression with multiple predictors 211</p> <p>11.2.5 Binary logistic regression and sample size planning 211</p> <p>11.2.6 Binary logistic regression fuel door example 212</p> <p>11.2.7 Binary logistic regression—significant binary input 213</p> <p>11.2.8 Binary logistic regression—nonsignificant binary input 214</p> <p>11.2.9 Binary logistic regression—continuous input 214</p> <p>11.2.10 Binary logistic regression—multiple inputs 215</p> <p>11.3 Logistic regression and customer loss functions 217</p> <p>11.4 Loss function with maximum (or minimum) response 220</p> <p>11.5 Summary 223</p> <p>Exercises 223</p> <p><b>12 Verification and validation 225</b></p> <p>12.1 Introduction 225</p> <p>12.2 Engineering model V&V 228</p> <p>12.3 Design verification methods and tools 230</p> <p>12.3.1 Design verification reviews 230</p> <p>12.3.2 Virtual prototypes and simulation 231</p> <p>12.3.3 Physical prototypes and early production builds 232</p> <p>12.3.4 Confirmation testing comparing alternatives 232</p> <p>12.3.5 Confirmation tests comparing the design to acceptance criteria 233</p> <p>12.4 Process validation procedure 233</p> <p>12.5 Summary 238</p> <p>References 239</p> <p>Bibliography 242</p> <p>Answers to selected exercises 246</p> <p>Index 251</p>
<p><b>BRYAN DODSON</b>, <i>Executive Engineer, SKF, USA</i> <p><b>PATRICK C. HAMMETT</b>, <i>Lead Faculty Six Sigma Program, Integrative Systems & Design, College of Engineering, University of Michigan, Ann Arbor, USA</i> <p><b>RENÉ KLERX</b>,<i> Principal Statistician, SKF, The Netherlands</i>
<p><b>PROBABILISTIC DESIGN FOR OPTIMIZATION AND ROBUSTNESS FOR ENGINEERS</b> <p><b>How to apply robust design to engineering design problems</b> <p>Unlike the Taguchi approach to robustness, which requires experimentation, the approach described in this book takes advantage of engineering knowledge to create models for system variation. Probabilistic Design for Optimization and Robustness for Engineers illustrates how to use these variation models to optimize total system cost, including component cost, manufacturing cost, re-work cost, and scrap cost. The text begins with simple, single output systems, and proceeds to complex systems with multiple outputs and many inputs. This methodology works equally well for engineering designs, or process design, or process improvement. <p>This book: <ul> <li>Provides a comprehensive guide to optimization and robustness for probabilistic design for engineers without a statistical background</li> <li>Features examples, case studies, and exercises that are applicable to a wide range of disciplines such as mechanical, electrical, chemical, aerospace, and industrial engineering</li> <li>Describes how to derive an empirical model when the engineering model is unknown</li> <li>Provides a robustness roadmap when using engineering modeling software, such as finite element analysis</li> <li>Demonstrates the effective application of numerous tools and methods to develop robust designs including Total Desirability Index and Binary Logistic Regression for Customer Loss Functions</li> <li>Is supported by an accompanying website featuring interactive animations and templates that can be customized for design problems encountered in practice</li> </ul> <p><i>Probabilistic Design for Optimization and Robustness for Engineers</i> is useful for practising engineers faced with the challenge of variation in design as well as senior and graduate level engineering and statistics students studying systems engineering or multi-disciplinary design. Simulations are also featured on the book's companion website, providing an excellent tool for instructors to use during lectures.

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €