Details

Principles of Inorganic Materials Design


Principles of Inorganic Materials Design


3. Aufl.

von: John N. Lalena, David A. Cleary, Olivier B.M. Hardouin Duparc

150,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.04.2020
ISBN/EAN: 9781119486763
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn the fundamentals of materials design with this all-inclusive approach to the basics in the field</b></p> <p>Study of materials science is an important aspect of curricula at universities worldwide. This text is designed to serve students at a fundamental level, positioning materials design as an essential aspect of the study of electronics, medicine, and energy storage. Now in its 3rd edition, Principles of Inorganic Materials Design is an introduction to relevant topics including inorganic materials structure/property relations and material behaviors.</p> <p>The new edition now includes chapters on computational materials science, intermetallic compounds, and covalent compounds. The text is meant to aid students in their studies by providing additional tools to study the key concepts and understand recent developments in materials research. In addition to the many topics covered, the textbook includes:</p> <p>• Accessible learning tools to help students better understand key concepts</p> <p>• Updated content including case studies and new information on computational materials science</p> <p>• Practical end-of-chapter exercises to assist students with the learning of the material</p> <p>• Short biographies introducing pioneers in the field of inorganic materials science</p> <p>For undergraduates just learning the material or professionals looking to brush up on their knowledge of current materials design information, this text covers a wide range of concepts, research, and topics to help round out their education. The foreword to the first edition was written by the 2019 Chemistry Nobel laureate Prof. John B. Goodenough.</p>
<p>Foreword to Second Edition xiii</p> <p>Foreword to First Edition xv</p> <p>Preface to Third Edition xix</p> <p>Preface to Second Edition xx</p> <p>Preface to First Edition xxi</p> <p>Acronyms xxiii</p> <p><b>1 Crystallographic Considerations </b><b>1</b></p> <p>1.1 Degrees of Crystallinity 1</p> <p>1.1.1 Monocrystalline Solids 2</p> <p>1.1.2 Quasicrystalline Solids 3</p> <p>1.1.3 Polycrystalline Solids 4</p> <p>1.1.4 Semicrystalline Solids 5</p> <p>1.1.5 Amorphous Solids 8</p> <p>1.2 Basic Crystallography 8</p> <p>1.2.1 Crystal Geometry 8</p> <p>1.2.1.1 Types of Crystallographic Symmetry 12</p> <p>1.2.1.2 Space Group Symmetry 17</p> <p>1.2.1.3 Lattice Planes and Directions 27</p> <p>1.3 Single-Crystal Morphology and Its Relationship to Lattice Symmetry 32</p> <p>1.4 Twinned Crystals, Grain Boundaries, and Bicrystallography 37</p> <p>1.4.1 Twinned Crystals and Twinning 37</p> <p>1.4.2 Crystallographic Orientation Relationships in Bicrystals 39</p> <p>1.4.2.1 The Coincidence Site Lattice 39</p> <p>1.4.2.2 Equivalent Axis–Angle Pairs 44</p> <p>1.5 Amorphous Solids and Glasses 46</p> <p>1.5.1 Oxide Glasses 49</p> <p>1.5.2 Metallic Glasses and Metal–Organic Framework Glasses 51</p> <p>1.5.3 Aerogels 53</p> <p>Practice Problems 53</p> <p>References 55</p> <p><b>2 Microstructural Considerations </b><b>57</b></p> <p>2.1 Materials Length Scales 57</p> <p>2.1.1 Experimental Resolution of Material Features 61</p> <p>2.2 Grain Boundaries in Polycrystalline Materials 63</p> <p>2.2.1 Grain Boundary Orientations 63</p> <p>2.2.2 Dislocation Model of Low Angle Grain Boundaries 65</p> <p>2.2.3 Grain Boundary Energy 66</p> <p>2.2.4 Special Types of “Low-Energy” Boundaries 68</p> <p>2.2.5 Grain Boundary Dynamics 69</p> <p>2.2.6 Representing Orientation Distributions in Polycrystalline Aggregates 70</p> <p>2.3 Materials Processing and Microstructure 72</p> <p>2.3.1 Conventional Solidification 72</p> <p>2.3.1.1 Grain Homogeneity 74</p> <p>2.3.1.2 Grain Morphology 76</p> <p>2.3.1.3 Zone Melting Techniques 78</p> <p>2.3.2 Deformation Processing 79</p> <p>2.3.3 Consolidation Processing 79</p> <p>2.3.4 Thin-Film Formation 80</p> <p>2.3.4.1 Epitaxy 81</p> <p>2.3.4.2 Polycrystalline PVD Thin Films 81</p> <p>2.3.4.3 Polycrystalline CVD Thin Films 83</p> <p>2.4 Microstructure and Materials Properties 83</p> <p>2.4.1 Mechanical Properties 83</p> <p>2.4.2 Transport Properties 86</p> <p>2.4.3 Magnetic and Dielectric Properties 90</p> <p>2.4.4 Chemical Properties 92</p> <p>2.5 Microstructure Control and Design 93</p> <p>Practice Problems 96</p> <p>References 96</p> <p><b>3 Crystal Structures and Binding Forces </b><b>99</b></p> <p>3.1 Structure Description Methods 99</p> <p>3.1.1 Close Packing 99</p> <p>3.1.2 Polyhedra 103</p> <p>3.1.3 The (Primitive) Unit Cell 103</p> <p>3.1.4 Space Groups and Wyckoff Positions 104</p> <p>3.1.5 Strukturbericht Symbols 104</p> <p>3.1.6 Pearson Symbols 105</p> <p>3.2 Cohesive Forces in Solids 106</p> <p>3.2.1 Ionic Bonding 106</p> <p>3.2.2 Covalent Bonding 108</p> <p>3.2.3 Dative Bonds 110</p> <p>3.2.4 Metallic Bonding 111</p> <p>3.2.5 Atoms and Bonds as Electron Charge Density 112</p> <p>3.3 Chemical Potential Energy 113</p> <p>3.3.1 Lattice Energy for Ionic Crystals 114</p> <p>3.3.2 The Born–Haber Cycle 119</p> <p>3.3.3 Goldschmidt’s Rules and Pauling’s Rules 120</p> <p>3.3.4 Total Energy 122</p> <p>3.3.5 Electronic Origin of Coordination Polyhedra in Covalent Crystals 124</p> <p>3.4 Common Structure Types 127</p> <p>3.4.1 Iono-covalent Solids 128</p> <p>3.4.1.1 <i>AX </i>Compounds 128</p> <p>3.4.1.2 <i>AX</i><sub>2 </sub><i>Compounds </i>130</p> <p>3.4.1.3 <i>AX</i><sub>6</sub> <i>Compounds </i>132</p> <p>3.4.1.4 <i>ABX</i><sub>2</sub> <i>Compounds </i>132</p> <p>3.4.1.5 <i>AB</i><sub>2</sub><i>X</i><sub>4</sub> <i>Compounds (Spinel and Olivine Structures) </i>134</p> <p>3.4.1.6 <i>ABX</i><sub>3</sub> <i>Compounds (Perovskite and Related Phases) </i>135</p> <p>3.4.1.7 <i>A</i><sub>2</sub><i>B</i><sub>2</sub>O<sub>5</sub>(<i>AB</i>O<sub>2.5</sub>) <i>Compounds (Oxygen-Deficient Perovskites) </i>137</p> <p>3.4.1.8 <i>A<sub>x</sub>B<sub>y</sub></i>O<i><sub>z</sub> Compounds (Bronzes) </i>139</p> <p>3.4.1.9 <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>X</i><sub>7</sub> <i>Compounds (Pyrochlores) </i>139</p> <p>3.4.1.10 Silicate Compounds 140</p> <p>3.4.1.11 Porous Structures 141</p> <p>3.4.2 Metal Carbides, Silicides, Borides, Hydrides, and Nitrides 144</p> <p>3.4.3 Metallic Alloys and Intermetallic Compounds 144</p> <p>3.4.3.1 Zintl Phases 147</p> <p>3.4.3.2 Nonpolar Binary Intermetallic Phases 149</p> <p>3.4.3.3 Ternary Intermetallic Phases 151</p> <p>3.5 Structural Disturbances 153</p> <p>3.5.1 Intrinsic Point Defects 154</p> <p>3.5.2 Extrinsic Point Defects 155</p> <p>3.5.3 Structural Distortions 156</p> <p>3.5.4 Bond Valence Sum Calculations 158</p> <p>3.6 Structure Control and Synthetic Strategies 162</p> <p>Practice Problems 165</p> <p>References 167</p> <p><b>4 The Electronic Level I: An Overview of Band Theory </b><b>171</b></p> <p>4.1 The Many-Body Schrödinger Equation and Hartree–Fock 171</p> <p>4.2 Choice of Boundary Conditions: Born’s Conditions 177</p> <p>4.3 Free-Electron Model for Metals: From Drude (Classical) to Sommerfeld (Fermi–Dirac) 179</p> <p>4.4 Bloch’s Theorem, Bloch Waves, Energy Bands, and Fermi Energy 180</p> <p>4.5 Reciprocal Space and Brillouin Zones 182</p> <p>4.6 Choices of Basis Sets and Band Structure with Applicative Examples 188</p> <p>4.6.1 From the Free-Electron Model to the Plane Wave Expansion 189</p> <p>4.6.2 Fermi Surface, Brillouin Zone Boundaries, and Alkali Metals versus Copper 191</p> <p>4.6.3 Understanding Metallic Phase Stability in Alloys 193</p> <p>4.6.4 The Localized Orbital Basis Set Method 195</p> <p>4.6.5 Understanding Band Structure Diagram with Rhenium Trioxide 196</p> <p>4.6.6 Probing DOS Band Structure in Metallic Alloys 199</p> <p>4.7 Breakdown of the Independent-Electron Approximation 200</p> <p>4.8 Density Functional Theory: The Successor to the Hartree–Fock Approach in Materials Science 202</p> <p>4.9 The Continuous Quest for Better DFT XC Functionals 205</p> <p>4.10 Van der Waals Forces and DFT 208</p> <p>Practice Problems 210</p> <p>References 210</p> <p><b>5 The Electronic Level II: The Tight-Binding Electronic Structure Approximation </b><b>213</b></p> <p>5.1 The General LCAO Method 214</p> <p>5.2 Extension of the LCAO Treatment to Crystalline Solids 219</p> <p>5.3 Orbital Interactions in Monatomic Solids 221</p> <p>5.3.1 σ-Bonding Interactions 221</p> <p>5.3.2 π-Bonding Interactions 225</p> <p>5.4 Tight-Binding Assumptions 229</p> <p>5.5 Qualitative LCAO Band Structures 232</p> <p>5.5.1 Illustration 1: Transition Metal Oxides with Vertex-Sharing Octahedra 236</p> <p>5.5.2 Illustration 2: Reduced Dimensional Systems 238</p> <p>5.5.3 Illustration 3: Transition Metal Monoxides with Edge-Sharing Octahedra 240</p> <p>5.5.4 Corollary 243</p> <p>5.6 Total Energy Tight-Binding Calculations 244</p> <p>Practice Problems 246</p> <p>References 246</p> <p><b>6 Transport Properties </b><b>249</b></p> <p>6.1 An Introduction to Tensors 249</p> <p>6.2 Microscopic Theory of Electrical Transport in Ceramics: The Role of Point Defects 254</p> <p>6.2.1 Oxygen-Deficient/Metal Excess and Metal-Deficient/Oxygen Excess Oxides 256</p> <p>6.2.2 Substitutions by Aliovalent Cations with Valence Isoelectronicity 261</p> <p>6.2.3 Substitutions by Isovalent Cations That are Not Valence Isoelectronic 263</p> <p>6.2.4 Nitrogen Vacancies in Nitrides 266</p> <p>6.3 Thermal Conductivity 268</p> <p>6.3.1 The Free Electron Contribution 269</p> <p>6.3.2 The Phonon Contribution 271</p> <p>6.4 Electrical Conductivity 274</p> <p>6.4.1 Band Structure Considerations 278</p> <p>6.4.1.1 Conductors 278</p> <p>6.4.1.2 Insulators 279</p> <p>6.4.1.3 Semiconductors 281</p> <p>6.4.1.4 Semimetals 290</p> <p>6.4.2 Thermoelectric, Photovoltaic, and Magnetotransport Properties 292</p> <p>6.4.2.1 Thermoelectrics 292</p> <p>6.4.2.2 Photovoltaics 298</p> <p>6.4.2.3 Galvanomagnetic Effects and Magnetotransport Properties 301</p> <p>6.4.3 Superconductors 303</p> <p>6.4.4 Improving Bulk Electrical Conduction in Polycrystalline, Multiphasic, and Composite Materials 307</p> <p>6.5 Mass Transport 308</p> <p>6.5.1 Atomic Diffusion 309</p> <p>6.5.2 Ionic Conduction 316</p> <p>Practice Problems 321</p> <p>References 322</p> <p><b>7 Hopping Conduction and Metal–Insulator Transitions </b><b>325</b></p> <p>7.1 Correlated Systems 327</p> <p>7.1.1 The Mott–Hubbard Insulating State 329</p> <p>7.1.2 Charge-Transfer Insulators 334</p> <p>7.1.3 Marginal Metals 334</p> <p>7.2 Anderson Localization 336</p> <p>7.3 Experimentally Distinguishing Disorder from Electron Correlation 340</p> <p>7.4 Tuning the M–I Transition 343</p> <p>7.5 Other Types of Electronic Transitions 345</p> <p>Practice Problems 347</p> <p>References 347</p> <p><b>8 Magnetic and Dielectric Properties </b><b>349</b></p> <p>8.1 Phenomenological Description of Magnetic Behavior 351</p> <p>8.1.1 Magnetization Curves 354</p> <p>8.1.2 Susceptibility Curves 355</p> <p>8.2 Atomic States and Term Symbols of Free Ions 359</p> <p>8.3 Atomic Origin of Paramagnetism 365</p> <p>8.3.1 Orbital Angular Momentum Contribution: The Free Ion Case 366</p> <p>8.3.2 Spin Angular Momentum Contribution: The Free Ion Case 367</p> <p>8.3.3 Total Magnetic Moment: The Free Ion Case 368</p> <p>8.3.4 Spin–Orbit Coupling: The Free Ion Case 368</p> <p>8.3.5 Single Ions in Crystals 371</p> <p>8.3.5.1 Orbital Momentum Quenching 371</p> <p>8.3.5.2 Spin Momentum Quenching 373</p> <p>8.3.5.3 The Effect of JT Distortions 373</p> <p>8.3.6 Solids 374</p> <p>8.4 Diamagnetism 376</p> <p>8.5 Spontaneous Magnetic Ordering 377</p> <p>8.5.1 Exchange Interactions 379</p> <p>8.5.1.1 Direct Exchange and Superexchange Interactions in Magnetic Insulators 382</p> <p>8.5.1.2 Indirect Exchange Interactions 387</p> <p>8.5.2 Itinerant Ferromagnetism 390</p> <p>8.5.3 Noncollinear Spin Configurations and Magnetocrystalline Anisotropy 394</p> <p>8.5.3.1 Geometric Frustration 394</p> <p>8.5.3.2 Magnetic Anisotropy 397</p> <p>8.5.3.3 Magnetic Domains 398</p> <p>8.5.4 Ferromagnetic Properties of Amorphous Metals 401</p> <p>8.6 Magnetotransport Properties 401</p> <p>8.6.1 The Double Exchange Mechanism 402</p> <p>8.6.2 The Half-Metallic Ferromagnet Model 403</p> <p>8.7 Magnetostriction 404</p> <p>8.8 Dielectric Properties 405</p> <p>8.8.1 The Microscopic Equations 407</p> <p>8.8.2 Piezoelectricity 408</p> <p>8.8.3 Pyroelectricity 414</p> <p>8.8.4 Ferroelectricity 416</p> <p>Practice Problems 421</p> <p>References 422</p> <p><b>9 Optical Properties of Materials </b><b>425</b></p> <p>9.1 Maxwell’s Equations 425</p> <p>9.2 Refractive Index 428</p> <p>9.3 Absorption 436</p> <p>9.4 Nonlinear Effects 441</p> <p>9.5 Summary 446</p> <p>Practice Problems 446</p> <p>References 447</p> <p><b>10 Mechanical Properties </b><b>449</b></p> <p>10.1 Stress and Strain 449</p> <p>10.2 Elasticity 452</p> <p>10.2.1 The Elasticity Tensors 455</p> <p>10.2.2 Elastically Isotropic and Anisotropic Solids 459</p> <p>10.2.3 The Relation Between Elasticity and the Cohesive Forces in a Solid 465</p> <p>10.2.3.1 Bulk Modulus 466</p> <p>10.2.3.2 Rigidity (Shear) Modulus 467</p> <p>10.2.3.3 Young’s Modulus 470</p> <p>10.2.4 Superelasticity, Pseudoelasticity, and the Shape Memory Effect 473</p> <p>10.3 Plasticity 475</p> <p>10.3.1 The Dislocation-Based Mechanism to Plastic Deformation 481</p> <p>10.3.2 Polycrystalline Metals 487</p> <p>10.3.3 Brittle and Semi-brittle Solids 489</p> <p>10.3.4 The Correlation Between the Electronic Structure and the Plasticity of Materials 490</p> <p>10.4 Fracture 491</p> <p>Practice Problems 494</p> <p>References 495</p> <p><b>11 Phase Equilibria, Phase Diagrams, and Phase Modeling </b><b>499</b></p> <p>11.1 Thermodynamic Systems and Equilibrium 500</p> <p>11.1.1 Equilibrium Thermodynamics 504</p> <p>11.2 Thermodynamic Potentials and the Laws 507</p> <p>11.3 Understanding Phase Diagrams 510</p> <p>11.3.1 Unary Systems 510</p> <p>11.3.2 Binary Systems 511</p> <p>11.3.3 Ternary Systems 518</p> <p>11.3.4 Metastable Equilibria 522</p> <p>11.4 Experimental Phase Diagram Determinations 522</p> <p>11.5 Phase Diagram Modeling 523</p> <p>11.5.1 Gibbs Energy Expressions for Mixtures and Solid Solutions 524</p> <p>11.5.2 Gibbs Energy Expressions for Phases with Long-Range Order 527</p> <p>11.5.3 Other Contributions to the Gibbs Energy 530</p> <p>11.5.4 Phase Diagram Extrapolations: The CALPHAD Method 531</p> <p>Practice Problems 534</p> <p>References 535</p> <p><b>12 Synthetic Strategies </b><b>537</b></p> <p>12.1 Synthetic Strategies 538</p> <p>12.1.1 Direct Combination 538</p> <p>12.1.2 Low Temperature 540</p> <p>12.1.2.1 Sol–Gel 540</p> <p>12.1.2.2 Solvothermal 543</p> <p>12.1.2.3 Intercalation 544</p> <p>12.1.3 Defects 546</p> <p>12.1.4 Combinatorial Synthesis 548</p> <p>12.1.5 Spinodal Decomposition 548</p> <p>12.1.6 Thin Films 550</p> <p>12.1.7 Photonic Materials 552</p> <p>12.1.8 Nanosynthesis 553</p> <p>12.1.8.1 Liquid Phase Techniques 554</p> <p>12.1.8.2 Vapor/Aerosol Methods 556</p> <p>12.1.8.3 Combined Strategies 556</p> <p>12.2 Summary 558</p> <p>Practice Problems 559</p> <p>References 559</p> <p><b>13 An Introduction to Nanomaterials </b><b>563</b></p> <p>13.1 History of Nanotechnology 564</p> <p>13.2 Nanomaterials Properties 565</p> <p>13.2.1 Electrical Properties 566</p> <p>13.2.2 Magnetic Properties 567</p> <p>13.2.3 Optical Properties 567</p> <p>13.2.4 Thermal Properties 568</p> <p>13.2.5 Mechanical Properties 569</p> <p>13.2.6 Chemical Reactivity 570</p> <p>13.3 More on Nanomaterials Preparative Techniques 572</p> <p>13.3.1 Top-Down Methods for the Fabrication of Nanocrystalline Materials 572</p> <p>13.3.1.1 Nanostructured Thin Films 572</p> <p>13.3.1.2 Nanocrystalline Bulk Phases 573</p> <p>13.3.2 Bottom-Up Methods for the Synthesis of Nanostructured Solids 574</p> <p>13.3.2.1 Precipitation 575</p> <p>13.3.2.2 Hydrothermal Techniques 576</p> <p>13.3.2.3 Micelle-Assisted Routes 577</p> <p>13.3.2.4 Thermolysis, Photolysis, and Sonolysis 580</p> <p>13.3.2.5 Sol–Gel Methods 581</p> <p>13.3.2.6 Polyol Method 582</p> <p>13.3.2.7 High-Temperature Organic Polyol Reactions (IBM Nanoparticle Synthesis) 584</p> <p>13.3.2.8 Additive Manufacturing (3D Printing) 584</p> <p>References 586</p> <p><b>14 Introduction to Computational Materials Science </b><b>589</b></p> <p>14.1 A Short History of Computational Materials Science 590</p> <p>14.1.1 1945–1965: The Dawn of Computational Materials Science 591</p> <p>14.1.2 1965–2000: Steady Progress Through Continued Advances in Hardware and Software 595</p> <p>14.1.3 2000–Present: High-Performance and Cloud Computing 598</p> <p>14.2 Spatial and Temporal Scales, Computational Expense, and Reliability of Solid-State Calculations 600</p> <p>14.3 Illustrative Examples 604</p> <p>14.3.1 Exploration of the Local Atomic Structure in Multi-principal Element Alloys by Quantum Molecular Dynamics 604</p> <p>14.3.2 Magnetic Properties of a Series of Double Perovskite Oxides <i>A</i><sub>2</sub><i>BC</i>O<sub>6</sub> (<i>A </i>= Sr, Ca; <i>B </i>= Cr; <i>C </i>= Mo, Re, W) by Monte Carlo Simulations in the Framework of the Ising Model 606</p> <p>14.3.3 Crystal Plasticity Finite Element Method (CPFEM) Analysis for Modeling Plasticity in Polycrystalline Alloys 613</p> <p>References 617</p> <p><b>15 Case Study I: TiO<sub>2</sub> </b><b>619</b></p> <p>15.1 Crystallography 619</p> <p>15.2 Microstructure 623</p> <p>15.3 Bonding 626</p> <p>15.4 Electronic Structure 627</p> <p>15.5 Transport 628</p> <p>15.6 Metal–Insulator Transitions 632</p> <p>15.7 Magnetic and Dielectric Properties 632</p> <p>15.8 Optical Properties 634</p> <p>15.9 Mechanical Properties 635</p> <p>15.10 Phase Equilibria 636</p> <p>15.11 Synthesis 638</p> <p>15.12 Nanomaterial 639</p> <p>Practice Questions 639</p> <p>References 640</p> <p><b>16 Case Study II: GaN </b><b>643</b></p> <p>16.1 Crystallography 643</p> <p>16.2 Microstructure 646</p> <p>16.3 Bonding 647</p> <p>16.4 Electronic Structure 647</p> <p>16.5 Transport 648</p> <p>16.6 Metal–Insulator Transitions 650</p> <p>16.7 Magnetic and Dielectric Properties 652</p> <p>16.8 Optical Properties 652</p> <p>16.9 Mechanical Properties 653</p> <p>16.10 Phase Equilibria 654</p> <p>16.11 Synthesis 654</p> <p>16.12 Nanomaterial 656</p> <p>Practice Questions 657</p> <p>References 658</p> <p>Appendix A: List of the 230 Space Groups 659</p> <p>Appendix B: The 32 Crystal Systems and the 47 Possible Forms 665</p> <p>Appendix C: Principles of Tensors 667</p> <p>Appendix D: Solutions to Practice Problems 679</p> <p>Index 683</p>
<p><b>JOHN N. LALENA</b> primarily focuses on the research of materials behavior and structure/property correlations across multiple length scales. He has over 25 years of experience in the private sector, including time spent at Honeywell Electronic Materials and Texas Instruments. He currently serves as a Physical Scientist in the Advanced Manufacturing Office at the U.S. Department of Energy.</p> <p><b>DAVID A. CLEARY</b> is a Professor in the Department of Chemistry at Gonzaga University in Washington, USA. His research interests are in synthesis and characterization of ternary semiconductors for applications in chemical sensors and energy storage and in testing metal oxides for photoelectrolysis of water.</p> <p><b>OLIVIER B.M. HARDOUIN DUPARC</b> is a researcher at the École Polytechnique Paris. His research primarily focuses on ab initio modeling of materials to unravel their atomic structure and mechanical properties.</p>
<p><b>Learn the fundamentals of materials design with this all-inclusive approach to the basics in the field</b></p> <p>Study of materials science is an important aspect of curricula at universities worldwide. This text is designed to serve students at a fundamental level, positioning materials design as an essential aspect of the study of electronics, medicine, and energy storage. Now in its 3rd edition, Principles of Inorganic Materials Design is an introduction to relevant topics including inorganic materials structure/property relations and material behaviors.</p> <p>The new edition now includes chapters on computational materials science, intermetallic compounds, and covalent compounds. The text is meant to aid students in their studies by providing additional tools to study the key concepts and understand recent developments in materials research. In addition to the many topics covered, the textbook includes:</p> <p>• Accessible learning tools to help students better understand key concepts</p> <p>• Updated content including case studies and new information on computational materials science</p> <p>• Practical end-of-chapter exercises to assist students with the learning of the material</p> <p>• Short biographies introducing pioneers in the field of inorganic materials science</p> <p>For undergraduates just learning the material or professionals looking to brush up on their knowledge of current materials design information, this text covers a wide range of concepts, research, and topics to help round out their education. The foreword to the first edition was written by the 2019 Chemistry Nobel laureate Prof. John B. Goodenough.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €