Details

Power System Dynamics with Computer-Based Modeling and Analysis


Power System Dynamics with Computer-Based Modeling and Analysis


1. Aufl.

von: Yoshihide Hase, Tanuj Khandelwal, Kazuyuki Kameda

170,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 11.02.2020
ISBN/EAN: 9781119487449
Sprache: englisch
Anzahl Seiten: 1136

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A unique combination of theoretical knowledge and practical analysis experience</b></p> <p>Derived from Yoshihide Hase�s <i>Handbook of Power Systems Engineering, 2<sup>nd</sup> Edition</i>, this book provides readers with everything they need to know about power system dynamics. Presented in three parts, it covers power system theories, computation theories, and how prevailed engineering platforms can be utilized for various engineering works. It features many illustrations based on ETAP to help explain the knowledge within as much as possible. </p> <p>Recompiling all the chapters from the previous book, <i>Power System Dynamics with Computer Based Modeling and Analysis</i> offers nineteen new and improved content with updated information and all new topics, including two new chapters on circuit analysis which help engineers with non-electrical engineering backgrounds. Topics covered include: Essentials of Electromagnetism; Complex Number Notation (Symbolic Method) and Laplace-transform; Fault Analysis Based on Symmetrical Components; Synchronous Generators; Induction-motor; Transformer; Breaker; Arrester; Overhead-line; Power cable; Steady-State/Transient/Dynamic Stability; Control governor; AVR; Directional Distance Relay and R-X Diagram; Lightning and Switching Surge Phenomena; Insulation Coordination; Harmonics; Power Electronics Applications (Devices, PE-circuit and Control) and more. </p> <ul> <li>Combines computer modeling of power systems, including analysis techniques, from an engineering consultant�s perspective</li> <li>Uses practical analytical software to help teach how to obtain the relevant data, formulate �what-if� cases, and convert data analysis into meaningful information</li> <li>Includes mathematical details of power system analysis and power system dynamics</li> </ul> <p><i>Power System Dynamics with Computer-Based Modeling and Analysis</i> will appeal to all power system engineers as well as engineering and electrical engineering students.</p>
<p>About the Authors xxix</p> <p>Preface xxxi</p> <p>Acknowledgments xxxiii</p> <p><b>Part A Power Systems Theories and Practices 1</b></p> <p><b>1 Essentials of Electromagnetism 3</b></p> <p>1.1 Overview 3</p> <p>1.2 Voltage, Current, Electric Power, and Resistance 3</p> <p>1.3 Electromagnetic Induction (Faraday’s Law) 4</p> <p>1.4 Self Inductance and Mutual Inductance 6</p> <p>1.5 Mutual Capacitance 7</p> <p><b>2 Complex Number Notation (Symbolic Method) and the Laplace Transform 11</b></p> <p>2.1 Euler’s Formula 11</p> <p>2.2 Complex Number Notation of Electricity Based on Euler’s Formula 12</p> <p>2.3 <i>LR</i> Circuit Transient Calculation Using Complex Number Notation and the Laplace Transform 14</p> <p>2.4 <i>LCR</i> Circuit Transient Calculation 16</p> <p>2.5 Resistive, Inductive, and Capacitive Load, and Phasor Expressions 21</p> <p><b>3 Transmission Line Matrices and Symmetrical Components 25</b></p> <p>3.1 Overhead Transmission Lines with Inductive <i>LR</i> Constants 25</p> <p>3.2 Overhead Transmission Lines with Capacitive C Constants 30</p> <p>3.3 Symmetrical Coordinate Method (Symmetrical Components) 32</p> <p>3.4 Conversion of a Three-Phase Circuit into a Symmetrical Coordinated Circuit 39</p> <p>3.5 Transmission Lines by Symmetrical Components 39</p> <p>3.6 Generator by Symmetrical Components (Simplified Description) 47</p> <p>3.7 Description of a Three-Phase Load Circuit by Symmetrical Components 49</p> <p><b>4 Physics of Transmission Lines and Line Constants 51</b></p> <p>4.1 Inductance 51</p> <p>4.2 Capacitance and Leakage Current 59</p> <p>4.3 Actual Configuration of Overhead Transmission Lines 66</p> <p>4.4 Special Properties of Working Inductance and Working Capacitance 68</p> <p>4.5 MKS Rational Unit System 71</p> <p><b>5 The Per-Unit Method 77</b></p> <p>5.1 Fundamental Concepts of the PU Method 77</p> <p>5.2 PU Method for a Single-Phase Circuit 77</p> <p>5.3 PU Method for Three-Phase Circuits 79</p> <p>5.4 Base Quantity Modification of Unitized Impedance 80</p> <p>5.5 Unitized Symmetrical Circuit: Numerical Example 81</p> <p><b>6 Transformer Modeling 91</b></p> <p>6.1 Single-Phase Three-Winding Transformer 91</p> <p>6.2 − − Δ-Connected Three-Phase, Three-Winding Transformer 95</p> <p>6.3 Three-Phase Transformers with Various Winding Connections 101</p> <p>6.4 Autotransformers 105</p> <p>6.5 On-Load Tap-Changing Transformer (LTC Transformer) 107</p> <p>6.6 Phase-Shifting Transformer 109</p> <p>6.7 Woodbridge Transformers and Scott Transformers 113</p> <p>6.8 Neutral Grounding Transformer 116</p> <p>6.9 Transformer Magnetic Characteristics and Inrush Current Phenomena 118</p> <p><b>7 Fault Analysis Based on Symmetrical Components 127</b></p> <p>7.1 Fundamental Concepts of Fault Analysis Based on the Symmetrical Coordinate Method 127</p> <p>7.2 Line-to-Ground Fault (Phase-a to Ground Fault: 1<i>ϕ</i>G) 127</p> <p>7.3 Fault Analysis at Various Fault Modes 132</p> <p>7.4 Conductor Opening 137</p> <p>7.5 Visual Vector Diagrams of Voltages and Currents under Fault Conditions 139</p> <p>7.6 Three-Phase-Order Misconnections 151</p> <p><b>8 Fault Analysis with the <i>αβ</i>0-Method 155</b></p> <p>8.1 <i>αβ</i>0-Method (Clarke-Components) 155</p> <p>8.2 Fault Analysis with <i>αβ</i>0-Components 166</p> <p>8.3 Advantages of the <i>αβ</i>0-Method 171</p> <p>8.4 Fault-Transient Analysis with Symmetrical Components and the <i>αβ</i>0-Method 171</p> <p><b>9 Power Cables 175</b></p> <p>9.1 Structural Features of Power Cables 175</p> <p>9.2 Circuit Constants of Power Cables 183</p> <p>9.3 Metallic Sheaths and Outer Coverings 190</p> <p><b>10 Synchronous Generators, Part 1: Circuit Theory 195</b></p> <p>10.1 Generator Model in a Phase abc-Domain 195</p> <p>10.2 <i>dq0</i> Method (<i>dq0</i> Components) 203</p> <p>10.3 Transformation of Generator Equations from the abc-Domain to the dq0-Domain 206</p> <p>10.4 Physical Meanings of Generator Equations in the dq0-Domain 210</p> <p>10.5 Generator dq0-Domain Equations 213</p> <p>10.6 Generator dq0-Domain Equivalent Circuit 218</p> <p>10.7 Generator Operating Characteristics and Vector Diagram on the d- and q-Axes Plane 220</p> <p>10.8 Generator Transient Reactance 223</p> <p>10.9 Symmetrical Equivalent Circuits of Generators 225</p> <p>10.10 Laplace-Transformed Generator Equations and Time Constants 231</p> <p>10.12 Relations Between the dq0-Domain and <i>αβ</i>0-Domain 239</p> <p>10.13 Calculating Generator Short-Circuit Transient Current Under Load 239</p> <p><b>11 Synchronous Generators, Part 2: Characteristics of Machinery 251</b></p> <p>11.1 Apparent Power <i>P</i> + <i>jQ</i> in the <i>abc-, 012-, dq0-</i>Domains 251</p> <p>11.2 Mechanical (Kinetic) Power and Generating (Electrical) Power 257</p> <p>11.3 Kinetic Equation for Generators 259</p> <p>11.4 Generator Operating Characteristics with P-Q (or p-q) Coordinates 269</p> <p>11.5 Generator Ratings and Capability Curves 271</p> <p>11.6 Generator’s Locus in the pq-Coordinate Plane under Various Operating Conditions 275</p> <p>11.7 Leading Power-Factor (Under-Excitation Domain) Operation, and UEL Function by AVR 277</p> <p>11.8 Operation at Over-Excitation (Lagging Power-Factor Operation) 282</p> <p>11.9 Thermal Generators’ Weak Points (Negative-Sequence Current, Higher Harmonic Current, Shaft-Torsional Distortion) 282</p> <p>11.10 Transient Torsional Twisting Torque of a TG Coupled Shaft 287</p> <p>11.11 General Description of Modern Thermal/Nuclear TG Units 290</p> <p><b>12 Steady-State, Transient, and Dynamic Stability 297</b></p> <p>12.1 P-<i>δ </i>Curves and Q-<i>δ </i>Curves 297</p> <p>12.2 Power Transfer Limits of Grid-Connected Generators (Steady-State Stability) 299</p> <p>12.3 Transient Stability 306</p> <p>12.4 Dynamic Stability 309</p> <p>12.5 Four-Terminal Circuit and the P − <i>δ </i>Curve under Fault Conditions 310</p> <p>12.6 P-<i>δ </i>Curve under Various Fault-Mode Conditions 312</p> <p>12.7 PQV Characteristics and Voltage Instability (Voltage Avalanche) 313</p> <p>12.8 Generator Characteristics with an AVR 319</p> <p>12.9 Generator Operation Limit With and Without an AVR in PQ Coordinates 330</p> <p>12.10 VQ (Voltage and Reactive Power) Control with an AVR 332</p> <p><b>13 Induction Generators and Motors (Induction Machines) 337</b></p> <p>13.1 Introduction to Induction Motors and Generators 337</p> <p>13.2 Doubly Fed Induction Generators and Motors 337</p> <p>13.3 Squirrel-Cage Induction Motors 355</p> <p>13.4 Proportional Relations of Mechanical Quantities and Electrical Quantities as a Basis of Power-Electronic Control 367</p> <p><b>14 Directional Distance Relays and R–X Diagrams 371</b></p> <p>14.1 Overview of Protective Relays 371</p> <p>14.2 Directional Distance Relays (DZ-Ry) and R–X Coordinate Plane 372</p> <p>14.3 R–X Diagram Locus under Fault Conditions 375</p> <p>14.4 Impedance Locus under Ordinary Load Conditions and Step-Out Conditions 381</p> <p>14.5 Impedance Locus Under Faults with Load-Flow Conditions 385</p> <p>14.6 Loss of Excitation Detection by Distance Relays (40-Relay) 386</p> <p><b>15 Lightning and Switching Surge Phenomena and Breaker Switching 391</b></p> <p>15.1 Traveling Wave on a Transmission Line, and Equations 391</p> <p>15.2 Four-Terminal Network Equations between Two Arbitrary Points 398</p> <p>15.3 Examination of Line Constants 399</p> <p>15.4 Behavior of Traveling Waves at Transition Points 401</p> <p>15.5 Surge Overvoltages and Their Three Different, Confusing Notations 404</p> <p>15.6 Behavior of Traveling Waves at a Lightning-Strike Point 406</p> <p>15.7 Traveling Wave Phenomena of Three-Phase Transmission Lines 408</p> <p>15.8 Reflection Lattices and Transient Behavior Modes 413</p> <p>15.9 Switching Surge Phenomena Caused by Breakers Tripping 415</p> <p>15.10 Breaker Phase Voltages and Recovery Voltages after Fault Tripping 424</p> <p>15.11 Three-Phase Breaker TRVs across Independent Poles 426</p> <p>15.12 Circuit Breakers and Switching Practices 432</p> <p>15.13 Switching Surge Caused by Line Switches (Disconnecting Switches) 452</p> <p>15.14 Surge Phenomena Caused on Power Cable Systems 454</p> <p>15.15 Lightning Surge Caused on Cable Lines 456</p> <p>15.16 Switching Surge Caused on Cable Lines 458</p> <p>15.17 Surge Voltages Caused on Cables and GIS Jointed Points 459</p> <p><b>16 Overvoltage Phenomena 463</b></p> <p>16.1 Neutral-Grounding Methods 463</p> <p>16.2 Arc-Suppression Coil (Petersen Coil) Neutral-Grounded Method 467</p> <p>16.3 Overvoltages Caused by a Line-to-Ground Fault 467</p> <p>16.4 Other Low-Frequency Overvoltage Phenomena (Non-resonant Phenomena) 469</p> <p>16.5 Lower-Frequency Resonant Overvoltages 472</p> <p>16.6 Interrupted Ground Fault of a Cable Line in a Neutral-Ungrounded System 475</p> <p>16.7 Switching Surge Overvoltages 475</p> <p>16.8 Overvoltage Phenomena Caused by Lightning Strikes 477</p> <p><b>17 Insulation Coordination 481</b></p> <p>17.1 Overvoltages as Insulation Stresses 481</p> <p>17.2 Classification of Overvoltages 483</p> <p>17.3 Fundamental Process of Insulation Coordination 486</p> <p>17.4 Countermeasures on Transmission Lines to Reduce Overvoltages and Flashover 487</p> <p>17.5 Tower-Mounted Arrester Devices 489</p> <p>17.6 Using Unequal Circuit Insulation (Double-Circuit Lines) 490</p> <p>17.7 Using High-Speed Reclosing 490</p> <p>17.8 Overvoltage Protection with Arresters at Substations 491</p> <p>17.9 Station Protection Using OGWs and Reduced Grounding Resistance 499</p> <p>17.10 Insulation Coordination Details 501</p> <p>17.11 Transfer Surge Voltages through Transformers, and Generator Protection 509</p> <p>17.12 Transformer Internal High-Frequency Voltage Oscillation Phenomena 518</p> <p>17.13 Oil-Filled Transformers Versus Gas-Filled Transformers 524</p> <p><b>18 Harmonics and Waveform Distortion Phenomena 527</b></p> <p>18.1 Classification of Harmonics and Waveform Distortion 527</p> <p>18.2 Impact of Harmonics 527</p> <p>18.3 Harmonic Phenomena Caused by Power Cable Line Faults 529</p> <p><b>19 Power Electronic Applications, Part 1: Devices 535</b></p> <p>19.1 Fundamental Concepts of Power Electronics 535</p> <p>19.2 Power Switching with Power Devices 535</p> <p>19.3 Snubber Circuit 539</p> <p>19.4 Voltage Conversion with Switching 540</p> <p>19.5 Power Electronics Devices 542</p> <p>19.6 Mathematical Background for Analyzing Power Electronics Applications 547</p> <p><b>20 Power Electronics Applications, Part 2: Circuit Theory 553</b></p> <p>20.1 AC-to-DC Conversion: A Rectifier with a Diode 553</p> <p>20.2 AC-to-DC Controlled Conversion: Rectifier with a Thyristor 562</p> <p>20.3 DC-to-DC Converters (DC-to-DC Choppers) 571</p> <p>20.4 DC-to-AC Inverters 579</p> <p>20.5 PWM Control of Inverters 583</p> <p>20.6 AC-to-AC Converters (Cycloconverters) 587</p> <p><b>21 Power Electronics Applications, Part 3: Control Theory 589</b></p> <p>21.1 Introduction 589</p> <p>21.2 Driving Motors 589</p> <p>21.3 Static Var Compensators (SVC: A Thyristor-Based Approach) 597</p> <p>21.4 Active Filters 603</p> <p>21.5 Generator Excitation Systems 609</p> <p>21.6 Adjustable-Speed Pumped-Storage Generator-Motor Units 610</p> <p>21.7 Wind Generation 615</p> <p>21.8 Small Hydro Generation 618</p> <p>21.9 Solar Generation (Photovoltaic Generation) 619</p> <p>21.10 High-Voltage DC Transmission (HVDC Transmission) 621</p> <p>21.11 FACTS Technology 625</p> <p>21.12 Railway Applications 627<br /><br />21.13 Uninterruptible Power Supplies 628<br /><br /><b>Appendix A Mathematical Formulae 631</b><br /><br /><b>Appendix B Matrix Equation Formulae 635</b></p> <p><b>Part B Digital Computation Theories 639</b></p> <p><b>22 Digital Computation Basics 641</b></p> <p>22.1 Introduction 641</p> <p>22.2 Network Types 642</p> <p>22.3 Circuit Elements 645</p> <p>22.4 Ohm’s Law 653</p> <p>22.5 Kirchhoff’s Circuit Laws 655</p> <p>22.6 Electrical Division Principle 656</p> <p>22.7 Instantaneous, Average, and RMS Values 657</p> <p>22.8 Nodal Formulation 658</p> <p>22.9 Procedure for Mesh Analysis 662</p> <p>22.10 Norton’s and Thévenin’s Equivalents 664</p> <p>22.11 Maximum Power Transfer Theorem 668</p> <p>22.13 Network Topology 675</p> <p>22.14 Power System Matrices 681</p> <p>22.15 Transformer Modeling 692</p> <p>22.16 Transmission Line Modeling 696</p> <p><b>23 Power-Flow Methods 701</b></p> <p>23.1 Newton–Raphson Method 701</p> <p>23.2 Gauss–Seidel Method 702</p> <p>23.3 Adaptive Newton–Raphson Method 703</p> <p>23.4 Fast-Decoupled Method 703</p> <p><b>24 Short-Circuit Methods 705</b></p> <p>24.1 ANSI/IEEE Calculation Methods 705</p> <p>24.2 IEC Calculation Methods 719</p> <p><b>25 Harmonics 729</b></p> <p>25.1 Problem Formulation 729</p> <p>25.2 Methodology and Standards 733</p> <p>25.3 Harmonic Indices 735</p> <p>25.4 Harmonic Component Modeling 740</p> <p>25.5 Power System Components 741</p> <p>25.6 System Resonance 743</p> <p>25.7 Harmonic Mitigation 744</p> <p><b>26 Reliability 749</b></p> <p>26.1 Methodology and Standards 749</p> <p>26.2 Performance Indices 752</p> <p><b>27 Numerical Integration Methods 755</b></p> <p>27.1 Accuracy 755</p> <p>27.2 Stability 755</p> <p>27.3 Stiffness 757</p> <p>27.4 Predictor–Corrector 757</p> <p>27.5 Runge–Kutta 758</p> <p><b>28 Optimization 761</b></p> <p>28.1 Power-Flow Injections 761</p> <p>28.2 Voltage Magnitude Constraints 762</p> <p>28.3 Line-Flow Thermal Constraints 762</p> <p>28.4 Line-Flow Constraints as Current Limitations 763</p> <p>28.5 Line-Flow Constraints as Voltage Angle Constraints 763</p> <p><b>Part C Analytical Practices and Examples using ETAP 765</b></p> <p><b>29 Introduction to Power System Analysis 767</b></p> <p>29.1 Planning Studies 767</p> <p>29.2 Need for Power-System Analysis 768</p> <p>29.3 Computers in Power Engineering 768</p> <p>29.4 Study Approach 768</p> <p>29.5 Operator Training 772</p> <p>29.6 System Reliability and Maintenance 772</p> <p>29.7 Electrical Transient Analyzer Program (ETAP) 772</p> <p><b>30 One-Line Diagrams 777</b></p> <p>30.1 Introduction 777</p> <p>30.2 Engineering Parameters 777</p> <p>30.3 One-Line Diagram Symbols 778</p> <p>30.4 Power-System Configurations 780</p> <p>30.5 Network Topology Processing 787</p> <p>30.6 Illustrative Example – Per-Unit and Single-Line Diagram 790</p> <p><b>31 Load Flow 791</b></p> <p>31.1 Introduction 791</p> <p>31.2 Study Objectives 791</p> <p>31.3 Problem Formulation 792</p> <p>31.4 Calculation Methodology 794</p> <p>31.5 Required Data for ETAP 796</p> <p>31.6 Data Collection and Preparation 797</p> <p>31.7 Model Validation 797</p> <p>31.8 Study Scenarios 799</p> <p>31.9 Contingency Analysis 800</p> <p>31.10 Optimal or Optimum Power Flow 801</p> <p>31.11 Illustrative Examples 803</p> <p><b>32 Short-Circuit/Fault Analysis 841</b></p> <p>32.1 Introduction 841</p> <p>32.2 Analysis Objectives 841</p> <p>32.3 Methodology and Standards 846</p> <p>32.4 Study Scenarios 855</p> <p>32.5 Results and Reports 856</p> <p>32.6 Illustrative Examples 858</p> <p><b>33 Motor Starting 881</b></p> <p>33.1 Methods 881</p> <p>33.2 Analysis Objectives 893</p> <p>33.3 Methodology and Standards 894</p> <p>33.4 Required Data 902</p> <p>33.5 Illustrative Examples 903</p> <p>33.6 Motor-Starting Plots and Results 913</p> <p>33.7 Motor-Starting Alerts 916</p> <p><b>34 Harmonics 917</b></p> <p>34.1 Introduction 917</p> <p>34.2 Analysis Objectives 919</p> <p>34.3 Required Data 921</p> <p>34.4 Harmonic Load Flow and Frequency Scan 923</p> <p>34.5 Illustrative Examples 924</p> <p><b>35 Transient Stability 939</b></p> <p>35.1 Introduction 939</p> <p>35.2 Analysis Objectives 940</p> <p>35.3 Basic Concepts of Transient Stability 942</p> <p>35.4 Dynamic Models 944</p> <p>35.5 User-Defined Models 967</p> <p>35.6 Parameter Tuning 967</p> <p>35.7 Single-Generator Power System Model 971</p> <p>35.8 Data Collection and Preparation 973</p> <p>35.9 Study Scenarios 974</p> <p>35.10 Stability Improvement 977</p> <p>35.11 System Simulation 977</p> <p>35.12 Illustrative Examples 979</p> <p><b>36 Reliability Assessment 1003</b></p> <p>36.1 Introduction 1003</p> <p>36.2 Analysis Objectives 1003</p> <p>36.3 Problem Formulation 1004</p> <p>36.4 Required Data 1005</p> <p>36.5 Illustrative Examples 1005</p> <p><b>37 Protective Device Coordination 1019</b></p> <p>37.1 Introduction 1019</p> <p>37.2 Relays 1022</p> <p>37.3 Methodology 1028</p> <p>37.4 Required Data 1035</p> <p>37.5 Principle of Protection 1036</p> <p>37.6 Principle of Selectivity/Coordination 1037</p> <p>37.7 Art of Protection and Coordination >600 V 1040</p> <p>37.8 Illustrative Examples 1048<br /><br /><b>Appendix C Standards, Regulations, and Best Practice 1071</b></p> <p>Further Reading 1083</p> <p>Index 1085</p>
<p><b>Yoshihide Hase</b> is a power systems engineering consultant in Japan. <p><b>Tanuj Khandelwal</b> is CTO and Senior Principal Electrical Engineer at ETAP - Operation Technology, Inc. in the USA. <p><b>Kazuyuki Kameda</b> provides engineering and consulting services for Electrical and Control Systems at Eltechs Engineering & Consulting Co., Ltd, in Japan.
<p><b>A unique combination of theoretical knowledge and practical analysis experience</b> <p>Derived from Yoshihide Hase's <i>Handbook of Power Systems Engineering<sup>, </sup>2nd Edition</i>, this book provides readers with everything they need to know about power system dynamics. Presented in three parts, it covers power system theories, computation theories, and how prevailed engineering platforms can be utilized for various engineering works. It features many illustrations based on ETAP to help explain the knowledge within as much as possible. <p>Recompiling all the chapters from the previous book, <i>Power System Dynamics with Computer-Based Modeling and Analysis</i> offers improved content with updated information and all-new topics, including two new chapters on circuit analysis which help engineers with non-electrical engineering backgrounds. Topics covered include: Essentials of Electromagnetism; Complex Number Notation (Symbolic Method) and Laplace-transform; Fault Analysis Based on Symmetrical Components; Synchronous Generators; Induction-motor; Transformer; Breaker; Arrester; Overhead-line; Power cable; Steady-State/Transient/Dynamic Stability; Control governor; AVR; Directional Distance Relay and R-X Diagram; Lightning and Switching Surge Phenomena; Insulation Coordination; Harmonics; Power Electronics Applications (Devices, PE-circuit and Control), and more. <ul> <li>Combines computer modeling of power systems, including analysis techniques, from an engineering consultant's perspective</li> <li>Uses practical, analytical software to help teach readers how to obtain the relevant data, formulate 'what-if' cases, and convert data analysis into meaningful information</li> <li>Includes mathematical details of power system analysis and power system dynamics</li> </ul> <p><i>Power System Dynamics with Computer-Based Modeling and Analysis</i> will appeal to all power system engineers as well as engineering and electrical engineering students.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €