Details

Potassium-ion Batteries


Potassium-ion Batteries

Materials and Applications
1. Aufl.

von: Inamuddin, Rajender Boddula, Abdullah M. Asiri

193,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 14.04.2020
ISBN/EAN: 9781119663249
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources.  As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power.  Battery technology is a huge part of this global energy revolution.</p> <p>Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries.  Potassium-ion (or “K-ion”) batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries.</p> Potassium-ion Batteries: Materials and Applications explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid-state science, material science, ionics, power sources, and renewable energy storage fields.
<p>Preface xiii</p> <p><b>1 Phosphorous-Based Materials for K-Ion Batteries 1<br /></b><i>Maryam Meshksar, Fatemeh Afshariani, and Mohammad Reza Rahimpour</i></p> <p>1.1 Introduction 1</p> <p>1.2 Principles of Potassium-Ion Batteries 5</p> <p>1.2.1 Cathode Materials 6</p> <p>1.2.2 Anode Materials 6</p> <p>1.2.2.1 Carbon-Based Materials 8</p> <p>1.2.2.2 Alloy-Based Anode Materials 9</p> <p>1.3 Conclusions 13</p> <p>List of Abbreviations 14</p> <p>References 14</p> <p><b>2 Antimony-Based Electrodes for Potassium Ion Batteries 19<br /></b><i>S. Bharadwaj, M. Chaitanya Varma and Ramesh Singampalli</i></p> <p>2.1 Introduction 19</p> <p>2.2 Insight of Experimental Method 21</p> <p>2.2.1 Synthesis Methods 21</p> <p>2.2.2 Characterization Tools 22</p> <p>2.2.3 Measurement Techniques 22</p> <p>2.3 KIB as Batteries 23</p> <p>2.3.1 Progress in KIB 23</p> <p>2.4 Use of Antimony (Sb) Based K-Ion Batteries (KIB) 24</p> <p>2.4.1 What Is Antimony? 24</p> <p>2.4.2 Structure of Antimony Based KIB 25</p> <p>2.4.3 Antimony Used in KIBs 25</p> <p>2.4.4 Research Based on K–Sb Ion Batteries in the Last 5 Years 27</p> <p>2.5 DFT Studies 32</p> <p>2.6 Future Perceptive and Challenges 34</p> <p>References 36</p> <p><b>3 K-Ion Battery Practical Application Toward Grid-Energy Storage 43<br /></b><i>Seyyed Mojtaba Mousavi, Maryam Zarei, Seyyed Alireza Hashemi, Chin Wei Lai and Sonia Bahrani</i></p> <p>3.1 Introduction 44</p> <p>3.2 Intercalation Reaction 50</p> <p>3.3 Cathode Materials 60</p> <p>3.3.1 Layered Metal Oxides 60</p> <p>3.3.2 Prussian Blue Analogs 62</p> <p>3.3.3 Polyanionic-Based Compounds 65</p> <p>3.3.4 Organic Materials 68</p> <p>3.4 Anode Materials 70</p> <p>3.4.1 Carbon-Based Materials 70</p> <p>3.4.2 Non-Carbonaceous Materials 73</p> <p>3.4.3 Alloy-Based Materials 76</p> <p>3.4.4 Organic Anodes 78</p> <p>3.5 Electrolyte and Binder 81</p> <p>3.6 Conclusions 83</p> <p>References 83</p> <p><b>4 Mn-Based Materials for K-Ion Batteries 99<br /></b><i>Pallavi Jain, Palak Pant, Sapna Raghav and Dinesh Kumar</i></p> <p>4.1 Introduction 100</p> <p>4.2 Anode Material 104</p> <p>4.3 Cathode Materials 105</p> <p>4.3.1 Manganese Layered Compounds 106</p> <p>4.3.2 Manganese Based Multi-Layered Compounds 108</p> <p>4.3.3 Prussian Blue Analogs 110</p> <p>4.4 Electrolyte 112</p> <p>4.5 Perspectives 112</p> <p>4.6 Conclusion 114</p> <p>Acknowledgment 115</p> <p>References 115</p> <p><b>5 Electrode Materials for K-Ion Batteries and Applications 123<br /></b><i>M. Prakash, N. Suresh Kumar, K. Chandra Babu Naidu, M.S.S.R.K.N. Sarma, Prasun Banerjee, R. Jeevan Kumar, Ramyakrishna Pothu and Rajender Boddula</i></p> <p>5.1 Introduction 124</p> <p>5.1.1 Why Batteries? 124</p> <p>5.1.2 Background of Rechargeable Batteries 125</p> <p>5.1.3 Classification of Batteries 125</p> <p>5.1.4 Potassium Ion Battery 127</p> <p>5.2 Conclusions 133</p> <p>References 134</p> <p><b>6 Active Materials for Flexible K-Ion Batteries 137<br /></b><i>Prasun Banerjee, Adolfo Franco Jr, K. Chandra Babu Naidu, D. Baba Basha, Ramyakrishna Pothu and Rajender Boddula</i></p> <p>6.1 Introduction 138</p> <p>6.2 Flexible Prussian Blue 138</p> <p>6.3 Flexible Carbon Nanotube/Prussian Blue 139</p> <p>6.4 Flexible Film From the Trace of Pencil 140</p> <p>6.5 Flexible Carbon Nanofiber Mat 141</p> <p>6.6 Flexible SeS<sub>2</sub>–Porous Carbon 141</p> <p>6.7 Flexible ReS<sub>2</sub>–Nanofiber Carbon 142</p> <p>6.8 Conclusions 143</p> <p>Acknowledgments 144</p> <p>References 144</p> <p><b>7 Hollow Nanostructures for K-Ion Batteries 147<br /></b><i>Peetam Mandal and Mitali Saha</i></p> <p>7.1 Introduction 147</p> <p>7.2 Current Scenario of Nanostructured Materials for K-Ion Batteries 148</p> <p>7.3 Hollow Nanostructure Based K-Ion Batteries 150</p> <p>7.3.1 Metallic Hollow Nanostructured Anodes for K-Ion Batteries 151</p> <p>7.3.2 Carbonaceous Hollow Nanostructured Anodes for K-Ion Batteries 153</p> <p>7.4 Conclusion 160</p> <p>References 161</p> <p><b>8 Polyanion Materials for K-Ion Batteries 167<br /></b><i>Shankara S. Kalanur, Hyungtak Seo and Basanth S. Kalanoor</i></p> <p>8.1 Introduction 168</p> <p>8.2 Potassium-Ion Batteries 169</p> <p>8.3 Cathode Materials for Potassium-Ion Batteries 170</p> <p>8.4 Polyanionic Materials 171</p> <p>8.4.1 The NASICON and Anti-NASICON Structured Polyanions 172</p> <p>8.4.2 Olivine Structured Polyanion Materials 174</p> <p>8.4.3 Tavorite Structured Polyanion Materials 175</p> <p>8.5 Polyanions as Cathode Material for Potassium-Ion Batteries 176</p> <p>8.5.1 Potassium-Based Fluorosulfates 176</p> <p>8.5.2 Amorphous Potassium-Based Iron Phosphates 177</p> <p>8.5.3 Potassium-Based Double Phosphates of Titanium 178</p> <p>8.5.4 Potassium-Based Vanadyl Phosphates 179</p> <p>8.5.5 Potassium-Based Vanadyl Flourophosphates 181</p> <p>8.6 Summary and Outlook 184</p> <p>References 185</p> <p><b>9 Fundamental Mechanism and Key Performance Factor in K-Ion Batteries 191<br /></b><i>Sapna Raghav, Pallavi Jain, Praveen Kumar Yadav and Dinesh Kumar</i></p> <p>9.1 Introduction 192</p> <p>9.1.1 Primary vs. Secondary Batteries 194</p> <p>9.1.2 Classification of Secondary Potassium Batteries 195</p> <p>9.2 Recognizing Potential Materials for Their Usage as a Cathode and Observing Their Storage Functionalities 195</p> <p>9.3 Aqueous Potassium-Ion Batteries 197</p> <p>9.3.1 KIB Electrolytes 198</p> <p>9.3.2 Potassium Metal Batteries 199</p> <p>9.3.3 K–S Battery 201</p> <p>9.4 Non-Aqueous Potassium-Ion Batteries 202</p> <p>9.4.1 Cathode 202</p> <p>9.4.1.1 Hexacyanometalates (HCM) 202</p> <p>9.4.1.2 Layered Oxides 202</p> <p>9.4.1.3 Polyanionic Frameworks 203</p> <p>9.4.1.4 Organic Crystals 203</p> <p>9.4.2 Anodes 203</p> <p>9.4.2.1 Graphite 204</p> <p>9.4.2.2 Other Carbonaceous Materials 204</p> <p>9.5 Opportunities and Challenges 205</p> <p>Acknowledgments 206</p> <p>References 207</p> <p><b>10 Fabrication of the Components of K-Ion Batteries: Material Selection and the Cell Assembly Techniques Toward the Higher Battery Performance 213<br /></b><i>Iqra Reyaz Hamdani and Ashok N. Bhaskarwar</i></p> <p>10.1 Introduction 214</p> <p>10.2 Recent Materials Studied for Cathodes 217</p> <p>10.2.1 Cathodes Based on Transition-Metal Oxides 217</p> <p>10.2.2 Cathodes Based on Transition-Metal Polyanions 230</p> <p>10.2.3 Cathodes Based on Organic Compounds 247</p> <p>10.3 Anodes 247</p> <p>10.3.1 Intercalation Anodes 250</p> <p>10.3.2 Conversion Anodes 265</p> <p>10.3.3 Alloying Anodes 272</p> <p>10.3.4 Organic Compounds 279</p> <p>10.4 Electrolytes and Binders 280</p> <p>10.5 Conclusion and Future Perspective 282</p> <p>Acknowledgment 282</p> <p>References 283</p> <p><b>11 MXenes for K-Ion Batteries 293<br /></b><i>Jingya Feng, Oi Lun Li, Qixun Xia and Aiguo Zhou</i></p> <p>11.1 Introduction 293</p> <p>11.2 Synthesis Method of MXene 295</p> <p>11.2.1 Synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene 297</p> <p>11.2.2 Synthesis of K<sub>2</sub>Ti<sub>4</sub>O<sub>9 </sub>(M–KTO) 298</p> <p>11.2.3 Synthesis of Alkalized Ti<sub>3</sub>C<sub>2</sub> MXene Nanosheets 299</p> <p>11.3 Structure and Electrochemical Properties of MXenes 300</p> <p>11.3.1 Ti<sub>3</sub>C<sub>2</sub> MXene 300</p> <p>11.3.2 K<sub>2</sub>Ti<sub>4</sub>O<sub>9</sub> (M–KTO) 300</p> <p>11.3.3 Alkalized Ti<sub>3</sub>C<sub>2</sub> MXene Nanosheetsis as Electrode Materials 305</p> <p>11.4 Summary and Outlook 307</p> <p>Acknowledgments 308</p> <p>References 308</p> <p><b>12 Metal Sulfides for K-Ion Batteries 313<br /></b><i>Xinxin Hu, Ningyuan Zhang, Nanasaheb M. Shinde, Rajaram S. Mane, Qixun Xia and Kwang Ho Kim</i></p> <p>12.1 Introduction 314</p> <p>12.2 Synthesis Approaches 315</p> <p>12.2.1 SnS<sub>2</sub>-Based Composites 315</p> <p>12.2.2 MoS<sub>2</sub>-Based Composites 317</p> <p>12.2.3 CoS-Based Composites 319</p> <p>12.2.4 Sb<sub>2</sub>S<sub>3</sub>-Based Composites 320</p> <p>12.2.5 FeS<sub>2</sub>-Based Composites 321</p> <p>12.2.6 Ni<sub>3</sub>S<sub>2</sub>-Based Composites 322</p> <p>12.2.7 ReS<sub>2</sub>/N-CNFs 322</p> <p>12.3 Structures, Properties, and K-Ion Battery Applications 324</p> <p>12.3.1 SnS<sub>2</sub>-Based Composites 324</p> <p>12.3.2 MoS<sub>2</sub>-Based Composites 325</p> <p>12.3.3 CoS-Based Composites 326</p> <p>12.3.4 Sb<sub>2</sub>S<sub>3</sub>-Based Composites 328</p> <p>12.3.5 FeS<sub>2</sub>-Based Composites 329</p> <p>12.3.6 Ni<sub>3</sub>S<sub>2</sub>-Based Composites 329</p> <p>12.4 Summary and Outlook 331</p> <p>Acknowledgments 331</p> <p>References 331</p> <p><b>13 Electrodes for Potassium Oxygen Batteries 337<br /></b><i>Kritika S. Sharma, Rekha Sharma and Dinesh Kumar</i></p> <p>13.1 Introduction 337</p> <p>13.2 Categorization of Potassium Secondary Batteries 340</p> <p>13.3 Potassium−Oxygen Battery 341</p> <p>13.4 State-of-the-Art or Current Status 341</p> <p>13.4.1 High Capacity Sb-Based Anode 341</p> <p>13.4.2 Enhanced Cycle Life by Functionally Graded Cathode (FGC) 342</p> <p>13.5 Advancement in Rechargeable Alkali Metal–O<sub>2</sub> Cells 343</p> <p>13.5.1 Metal Anodes 343</p> <p>13.5.2 O<sub>2</sub>-Cathodes 346</p> <p>13.5.2.1 C-Cathodes 346</p> <p>13.5.2.2 Non-C-Cathodes 348</p> <p>13.6 Conclusion 349</p> <p>Acknowledgment 351</p> <p>References 352</p> <p><b>14 Ti-Based Materials for K-Ion Batteries 357<br /></b><i>Rekha Sharma, Sapna Nehra and Dinesh Kumar</i></p> <p>14.1 Introduction 357</p> <p>14.2 Titanium-Based Compounds 359</p> <p>14.3 Some Other Materials for KIBs Such as K<sub>2</sub>Ti<sub>8</sub>O<sub>7</sub> and K<sub>2</sub>Ti<sub>4</sub>O<sub>9</sub> 362</p> <p>14.4 Promises and Challenges of KIBs 362</p> <p>14.5 Summary and Future Scenario 364</p> <p>Acknowledgments 366</p> <p>References 366</p> <p>14.6 Summary 372</p> <p>Abbreviations 372</p> <p><b>15 Newborn Electrodes for K-Ion Batteries 373<br /></b><i>Fatemeh Rezaei, Zeynab Rezaeian and Mohammad Reza Rahimpour</i></p> <p>15.1 Introduction 373</p> <p>15.2 Negative Electrode Materials 375</p> <p>15.2.1 Carbon Based Materials 381</p> <p>15.2.1.1 Graphite 381</p> <p>15.2.1.2 Other Carbonaceous Materials 383</p> <p>15.2.2 Alloying and Conversion Electrodes 386</p> <p>15.2.3 Organic Anodes 388</p> <p>15.3 Positive Electrode Materials 389</p> <p>15.3.1 Layered Oxide Compounds 389</p> <p>15.3.2 Hexacyanometallate Groups 394</p> <p>15.3.3 Polyanionic Compounds 395</p> <p>15.3.4 Organic Cathode 396</p> <p>15.4 Conclusions 398</p> <p>List of Abbreviations 399</p> <p>References 399</p> <p>Index 411</p>
<p><b>Inamuddin, PhD</b>, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has published about 150 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Rajender Boddula, PhD</b>, is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). He has numerous honors, book chapters, and academic papers to his credit and is an editorial board member and a referee for several reputed international peer-reviewed journals. <p><b>Abdullah M. Asiri</b> is the Head of the Chemistry Department at King Abdulaziz University and the founder and Director of the Center of Excellence for Advanced Materials Research (CEAMR). He holds multiple patents, has authored ten books, more than one thousand publications in international journals, and multiple book chapters.
<p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this is the most thorough, up-to-date, and comprehensive volume on potassium-ion batteries available today.</b> <p>Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make "greener" choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. <p>Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries. Potassium-ion (or "K-ion") batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries. <p><i>Potassium-ion Batteries: Materials and Applications</i> explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid- state science, material science, ionics, power sources, and renewable energy storage fields. <p>This outstanding new volume: <ul> <li>Covers the basic research and application approaches to potassium-ion batteries</li> <li>Explores challenges and future directions of potassium-ion batteries</li> <li>Outlines the influences of electrodes and electrolytes for enhanced performance</li> <li>Includes all types of energy storage materials in a single volume</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €