Details

Polysaccharides


Polysaccharides

Properties and Applications
1. Aufl.

von: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tariq Altalhi

233,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.05.2021
ISBN/EAN: 9781119711407
Sprache: englisch
Anzahl Seiten: 784

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book provides the whole spectrum of polysaccharides from basic concepts to commercial market applications. Chapters cover various types of sources, classification, properties, characterization, processing, rheology and fabrication of polysaccharide-based materials and their composites and gels. The applications of polysaccharides include in cosmetics, food science, drug delivery, biomedicine, biofuel production, marine, packaging, chromatography and environmental remediation. It also reviews the fabrication of inorganic and carbon nanomaterials from polysaccharides. The book incorporates industrial applications and will fill the gap between the exploration works in the laboratory and viable applications in related ventures.</p>
<p>Preface xxiii</p> <p><b>1 Natural Polysaccharides From <i>Aloe vera </i>L. Gel (<i>Aloe barbadensis </i>Miller): Processing Techniques and Analytical Methods 1<br /></b><i>Silvana Teresa Lacerda Jales, Raquel de Melo Barbosa, Girliane Regina da Silva, Patricia Severino and Tulio Flávio Accioly de Lima Moura</i></p> <p>1.1 Introduction 2</p> <p>1.1.1 Gel Composition from <i>A. vera </i>3</p> <p>1.2 Applications of <i>A. vera </i>Mucilaginous Gel or Fractions 5</p> <p>1.3 <i>Aloe vera </i>Gel Processing 5</p> <p>1.3.1 Obtaining Polysaccharide Fraction or Acemannan 8</p> <p>1.4 Analytical Methods Applied 9</p> <p>1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars 9</p> <p>1.4.2 Analytical Techniques 12</p> <p>1.4.2.1 Chromatography Analysis 12</p> <p>1.4.2.2 Infrared Spectroscopy (IR) 13</p> <p>1.4.2.3 Nuclear Magnetic Resonance Spectroscopy 14</p> <p>1.4.2.4 Mass Spectrometry 15</p> <p>1.4.2.5 Ultraviolet–Visible Spectroscopy 16</p> <p>1.4.2.6 Comprehensive Microarray Polymer Profiling 16</p> <p>1.5 Conclusion 17</p> <p>References 17</p> <p><b>2 Cell Wall Polysaccharides 23<br /></b><i>Ata Ullah, Lutufur Rahman, Muhammad Bilal Yazdani, Muhammad Irfan, Waheed S. Khan and Asma Rehman</i></p> <p>2.1 Introduction to Cell Wall 23</p> <p>2.2 Plant Cell Wall Polysaccharides 24</p> <p>2.2.1 Cellulose 24</p> <p>2.2.2 Hemicellulose 25</p> <p>2.2.2.1 Xyloglucan 25</p> <p>2.2.2.2 Xylans 25</p> <p>2.2.2.3 Mannans 26</p> <p>2.2.3 Callose 26</p> <p>2.2.4 Pectic Polysaccharides 26</p> <p>2.2.4.1 Homogalacturonan (HG) 27</p> <p>2.2.4.2 Arabinan 27</p> <p>2.3 Algal Cell Wall Polysaccharides 28</p> <p>2.3.1 Alginates 28</p> <p>2.3.2 Sulfated Galactans 28</p> <p>2.3.3 Fucoidans 30</p> <p>2.4 Fungal Cell Wall Polysaccharides 30</p> <p>2.4.1 Glucan 31</p> <p>2.4.2 Chitin and Chitosan 31</p> <p>2.5 Bacterial Cell Wall Polysaccharides 32</p> <p>2.5.1 Peptidoglycan 32</p> <p>2.5.2 Lipopolysaccharides 33</p> <p>References 33</p> <p><b>3 Marine Polysaccharides: Properties and Applications 37<br /></b><i>Tonmoy Ghosh, Rabinder Singh, Asha Arumugam Nesamma and Pannaga Pavan Jutur</i></p> <p>3.1 Introduction 37</p> <p>3.2 Polysaccharide Origins 38</p> <p>3.3 Properties 38</p> <p>3.3.1 Cellulose 38</p> <p>3.3.2 Chitosan 40</p> <p>3.3.3 Alginate 41</p> <p>3.3.4 Carrageenan 41</p> <p>3.3.5 Agar 41</p> <p>3.3.6 Porphyran 42</p> <p>3.3.7 Fucoidan 42</p> <p>3.3.8 Ulvan 42</p> <p>3.3.9 Exopolysaccharides From Microalgae 43</p> <p>3.4 Applications of Polysaccharides 44</p> <p>3.4.1 Biomedical Applications 44</p> <p>3.4.1.1 Cellulose 44</p> <p>3.4.1.2 Chitosan 44</p> <p>3.4.1.3 Alginate 45</p> <p>3.4.2 Food Applications 45</p> <p>3.4.2.1 Cellulose 45</p> <p>3.4.2.2 Chitosan 46</p> <p>3.4.2.3 Alginates 46</p> <p>3.4.2.4 Carrageenan 47</p> <p>3.4.2.5 Agar 47</p> <p>3.4.3 Pharmaceutical and Nutraceutical Applications 47</p> <p>3.4.3.1 Cellulose 47</p> <p>3.4.3.2 Chitosan 47</p> <p>3.4.3.3 Alginate 48</p> <p>3.4.3.4 Carrageenan 48</p> <p>3.4.3.5 Porphyran 49</p> <p>3.4.3.6 Fucoidan 49</p> <p>3.4.4 Agriculture 50</p> <p>3.5 Conclusions 50</p> <p>References 51</p> <p><b>4 Seaweed Polysaccharides: Structure, Extraction and Applications 61<br /></b><i>Oya Irmak Şahin</i></p> <p>4.1 Introduction 61</p> <p>4.1.1 Agar 62</p> <p>4.1.2 Carrageenan 63</p> <p>4.1.3 Alginate (Alginic Acid, Algin) 65</p> <p>4.1.4 Fucoidan 67</p> <p>4.1.5 Laminaran 68</p> <p>4.1.6 Ulvan 69</p> <p>4.2 Conclusion 70</p> <p>References 70</p> <p><b>5 Agars: Properties and Applications 75<br /></b><i>Sudhakar Padmesh and Aditi Singh</i></p> <p>5.1 History and Origin of Agar 75</p> <p>5.1.1 Agarophytes Used in Agar Manufacturing 76</p> <p>5.2 Physical Properties of Agar Producing Seaweeds 76</p> <p>5.3 Agar Manufacturing 78</p> <p>5.3.1 Types of Agar Manufacturing 78</p> <p>5.3.1.1 Freeze–Thaw Method 78</p> <p>5.3.1.2 Syneresis Method 78</p> <p>5.4 Structure of Agar 79</p> <p>5.5 Heterogeneity of Agar 80</p> <p>5.6 Physico-Chemical Characteristics of Agar 80</p> <p>5.7 Chemical Characteristics of Agar 82</p> <p>5.8 Factors Influencing the Characteristics of Agar 83</p> <p>5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar 85</p> <p>5.8.2 Synergies and Antagonisms of Agar Gels 86</p> <p>5.9 Uses of Agar in Various Sectors 87</p> <p>5.9.1 Applications of Agar in Food Industry 88</p> <p>5.9.2 Application of Agar in Harvesting Insects and Worms 89</p> <p>5.9.3 Vegetable Tissue Culture Formulations 90</p> <p>5.9.4 Culture Media for Microbes 91</p> <p>5.9.5 Industrial Applications of Agar 91</p> <p>5.10 Conclusion and Discussion 91</p> <p>References 92</p> <p><b>6 Biopolysaccharides: Properties and Applications 95<br /></b><i>Sinem Tunçer</i></p> <p>6.1 Structure and Classification of Biopolysaccharides 95</p> <p>6.1.1 Structure 95</p> <p>6.1.2 Classification 97</p> <p>6.1.3 Structural Characterization Techniques 98</p> <p>6.2 Uses and Applications of Biopolysaccharides 99</p> <p>6.2.1 Functional Fibers 100</p> <p>6.2.2 Biomedicine 101</p> <p>6.2.2.1 Tissue Engineering 102</p> <p>6.2.2.2 Wound Healing 107</p> <p>6.2.2.3 Drug Loading and Delivery 110</p> <p>6.2.2.4 Therapeutics 114</p> <p>6.2.3 Cosmetics 115</p> <p>6.2.4 Foods and Food Ingredients 116</p> <p>6.2.5 Biofuels 119</p> <p>6.2.6 Wastewater Treatment 120</p> <p>6.2.7 Textiles 121</p> <p>6.3 Conclusion 122</p> <p>References 123</p> <p><b>7 Chitosan Derivatives: Properties and Applications 135<br /></b><i>Gincy Marina Mathew, Sarah Bill Ulaeto, Reshmy R., Rajeev Kumar Sukumaran, Parameswaran Binod, Ashok Pandey and Raveendran Sindhu</i></p> <p>7.1 Introduction 135</p> <p>7.2 Properties of Chitosan Derivatives 142</p> <p>7.2.1 Physiochemical Properties 142</p> <p>7.2.2 Functional Properties 143</p> <p>7.2.3 Biological Properties of Chitosan 144</p> <p>7.3 Applications of Chitosan Derivatives 145</p> <p>7.3.1 Anticancer Agents 145</p> <p>7.3.2 Bone Tissue Material Formation 147</p> <p>7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance 148</p> <p>7.3.4 Drug Delivery 149</p> <p>7.3.5 Chromatographic Separations 150</p> <p>7.3.6 Waste Management 150</p> <p>7.3.7 Food Industry 151</p> <p>7.3.8 In Cosmetics 152</p> <p>7.3.9 In Paint as Antifouling Coatings 152</p> <p>7.4 Conclusions 152</p> <p>Acknowledgement 153</p> <p>References 153</p> <p><b>8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco 163<br /></b><i>El Asri Ouahid, Ramdani Mohamed and Fadlaoui Soufiane</i></p> <p>8.1 Introduction 163</p> <p>8.2 Nador Lagoon: Situation and Characteristics 164</p> <p>8.3 Seaweed 165</p> <p>8.4 Polysaccharides in Seaweed 166</p> <p>8.5 Algae Polysaccharides in Nador Lagoon’s Seaweed 167</p> <p>8.5.1 <i>C. prolifera </i>167</p> <p>8.5.1.1 Sulfated Galactans 168</p> <p>8.5.2 <i>U. rigida & E. intestinalis </i>168</p> <p>8.5.2.1 Ulvan 169</p> <p>8.5.3 <i>C. adhaerens, C. bursa, C. tomentosum </i>170</p> <p>8.5.3.1 Sulfated Arabinans 170</p> <p>8.5.3.2 Sulfated Arabinogalactans 170</p> <p>8.5.3.3 Mannans 171</p> <p>8.6 Conclusion 172</p> <p>References 172</p> <p><b>9 Salep Glucomannan: Properties and Applications 177<br /></b><i>Abdullah Kurt</i></p> <p>9.1 Introduction 177</p> <p>9.2 Production 179</p> <p>9.3 Composition and Physicochemical Structure 181</p> <p>9.4 Rheological Properties 183</p> <p>9.5 Purification and Deacetylation 188</p> <p>9.6 Food Applications 191</p> <p>9.6.1 Beverage 191</p> <p>9.6.2 Ice Cream and Emulsion Stabilizing 192</p> <p>9.6.3 Edible Film/Coating 194</p> <p>9.6.4 Gelation 195</p> <p>9.7 Health Benefits 196</p> <p>9.8 Conclusions and Future Trends 197</p> <p>References 198</p> <p><b>10 Exudate Tree Gums: Properties and Applications 205<br /></b><i>Aruna Jyothi Kora</i></p> <p>10.1 Introduction 205</p> <p>10.1.1 Gum Arabic 206</p> <p>10.1.2 Gum Karaya 208</p> <p>10.1.3 Gum Kondagogu 209</p> <p>10.1.4 Gum Ghatti 209</p> <p>10.1.5 Gum Tragacanth 210</p> <p>10.1.6 Gum Olibanum 211</p> <p>10.2 Nanobiotechnology Applications 211</p> <p>10.3 Minor Tree Gums 214</p> <p>10.4 Conclusions 214</p> <p>Acknowledgment 217</p> <p>References 218</p> <p><b>11 Cellulose and its Derivatives: Properties and Applications 221<br /></b><i>Rafael de Avila Delucis, Pedro Henrique Gonzalez de Cademartori, André Ricardo Fajardo and Sandro Campos Amico</i></p> <p>11.1 Introduction 221</p> <p>11.2 Main Raw Materials 222</p> <p>11.3 Composition and Chemical Structure of Lignocellulosic Materials 224</p> <p>11.4 Cellulose: Chemical Backbone and Crystalline Formats 225</p> <p>11.5 Cellulose Extraction 228</p> <p>11.5.1 Mechanical Methods 228</p> <p>11.5.2 Chemical Methods 231</p> <p>11.6 Cellulose Products and its Derivatives 232</p> <p>11.7 Main Applications 236</p> <p>11.8 Conclusion 241</p> <p>References 242</p> <p><b>12 Starch and its Derivatives: Properties and Applications 253<br /></b><i>Bhanita Goswami and Debajyoti Mahanta</i></p> <p>12.1 Introduction 253</p> <p>12.2 Physicochemical and Functional Properties of Starch 254</p> <p>12.2.1 Size, Morphology and Crystallinity of Starch Granules 255</p> <p>12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules 257</p> <p>12.2.3 Solubility and Swelling Capacity of Starch 257</p> <p>12.2.4 Gelatinization and Retrogradation of Starch 258</p> <p>12.2.5 Birefringence and Glass Transition Temperature of Starch 259</p> <p>12.2.6 Rheological and Thermal Properties of Starch 260</p> <p>12.2.7 Transmittance and Opacity of Starch 260</p> <p>12.2.8 Melt Processability of Starch 261</p> <p>12.3 Modification of Starch 261</p> <p>12.3.1 Physical Modification of Starch 262</p> <p>12.3.2 Chemical Modification of Starch 263</p> <p>12.3.3 Dual Modification of Starch 265</p> <p>12.3.4 Enzymatic Modification of Starch 265</p> <p>12.3.5 Genetic Modification of Starch 265</p> <p>12.4 Application of Starch and its Derivatives 266</p> <p>12.4.1 In Food Industry 266</p> <p>12.4.2 In Paper Industry 266</p> <p>12.4.3 Starch as Binders 267</p> <p>12.4.4 In Detergent Products 267</p> <p>12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics 267</p> <p>12.4.6 In Pharmaceutical and Cosmetic Industries 268</p> <p>12.4.7 As Industrial Raw Materials 269</p> <p>12.4.8 As Adsorbents for Environmental Applications 269</p> <p>12.4.9 As Food Packaging Materials 269</p> <p>12.4.10 In Drug Delivery 270</p> <p>12.4.11 As Antimicrobial Films and Coatings 270</p> <p>12.4.12 In Advanced Functional Materials 271</p> <p>12.5 Conclusion 273</p> <p>References 274</p> <p><b>13 Crystallization of Polysaccharides 283<br /></b><i>Mohsen Khodadadi Yazdi, Farzad Seidi, Yongcan Jin, Payam Zarrintaj, Huining Xiao, Amin Esmaeili, Sajjad Habibzadeh and Mohammad Reza Saeb</i></p> <p>13.1 Introduction 283</p> <p>13.2 Principles of Crystallization of Polysaccharides 285</p> <p>13.3 Techniques for Crystallinity Measurement 287</p> <p>13.4 Crystallization Behavior of Polysaccharides 287</p> <p>13.4.1 Cellulose 287</p> <p>13.4.2 Chitosan and Chitin 290</p> <p>13.4.3 Starch 291</p> <p>13.5 Polymer/Polysaccharide Crystalline Nanocomposites 293</p> <p>13.6 Conclusion 293</p> <p>References 294</p> <p><b>14 Polysaccharides as Novel Materials for Tissue Engineering Applications 301<br /></b><i>Nandini A. Pattanashetti, Anand I. Torvi, Arun K. Shettar, Pramod B. Gai and Mahadevappa Y. Kariduraganavar</i></p> <p>14.1 Introduction 301</p> <p>14.2 Types of Scaffolds for Tissue Engineering 303</p> <p>14.3 Biomaterials for Tissue Engineering 304</p> <p>14.4 Polysaccharide-Based Scaffolds for Tissue Engineering 305</p> <p>14.4.1 Alginate-Based Scaffolds 306</p> <p>14.4.2 Chitosan-Based Scaffolds 307</p> <p>14.4.3 Cellulose-Based Scaffolds 309</p> <p>14.4.4 Dextran and Pullulan-Based Scaffolds 310</p> <p>14.4.5 Starch-Based Scaffolds 311</p> <p>14.4.6 Xanthan-Based Scaffolds 312</p> <p>14.4.7 Glycosaminoglycans-Based Scaffolds 313</p> <p>14.5 Current Challenges and Future Perspectives 316</p> <p>Acknowledgements 317</p> <p>References 317</p> <p><b>15 Structure and Solubility of Polysaccharides 325<br /></b><i>Vickramjeet Singh, Shikha Indoria, K.J. Jisha and Ramesh L. Gardas</i></p> <p>15.1 Introduction 325</p> <p>15.2 Polysaccharide Structure and Solubility in Water 326</p> <p>15.3 Solubility and Molecular Weight 329</p> <p>15.4 Solubility and Branching 330</p> <p>15.5 Polysaccharide Solutions 332</p> <p>15.6 Conclusions 334</p> <p>Acknowledgments 334</p> <p>References 334</p> <p><b>16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials 337<br /></b><i>Yuliya Dzyazko and Vladimir Ogenko</i></p> <p>16.1 Introduction 337</p> <p>16.2 Aerogels 338</p> <p>16.2.1 Plant and Bacterial Cellulose 339</p> <p>16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin 344</p> <p>16.2.3 Carbon Aerogels Produced From Bacterial Cellulose 348</p> <p>16.2.4 Chitosan and Sodium Alginate for Preparation of Carbon Aerogels 350</p> <p>16.3 Graphene-Like Materials and Nanotubes Produced From Polysaccharides 352</p> <p>16.4 Biocarbon Quantum Dots 355</p> <p>16.5 Membranes Containing Carbon Nanoparticles Derived From Cellulose 356</p> <p>16.6 Conclusions 358</p> <p>References 358</p> <p><b>17 Rheology and Structural Properties of Polysaccharides 367<br /></b><i>Andreea Irina Barzic</i></p> <p>17.1 Introduction 367</p> <p>17.2 General Structural Features of Polysaccharides 368</p> <p>17.3 Main Types of Polysaccharides and Their Structural Properties 370</p> <p>17.4 Rheological Behavior of Polysaccharides 374</p> <p>17.4.1 Semi-Diluted and Concentrated Solutions of Polysaccharides 374</p> <p>17.4.2 Gels of Polysaccharides 375</p> <p>17.4.3 Polysaccharide Liquid Crystals 377</p> <p>17.5 Conclusions 379</p> <p>References 379</p> <p><b>18 Gums-Based Bionanostructures for Medical Applications 385<br /></b><i>Hira Munir, Muhammad Bilal, Muhammad Imran Khan and Hafiz M.N. Iqbal</i></p> <p>18.1 Plants and Their Bioactive Compounds 386</p> <p>18.2 Natural Gums—Physicochemical Features 386</p> <p>18.3 Sources of Natural Gums 387</p> <p>18.3.1 Exudate Gums 387</p> <p>18.3.2 Mucilages 387</p> <p>18.3.3 Seaweed Polysaccharides 388</p> <p>18.3.4 Microbial Polysaccharides 388</p> <p>18.3.5 Animal Polysaccharide 388</p> <p>18.3.6 Other Sources of Polysaccharide Gums 388</p> <p>18.4 Classification of Gums 388</p> <p>18.4.1 According to the Charge 388</p> <p>18.4.2 According to the Source 389</p> <p>18.4.3 According to Shape 389</p> <p>18.4.4 According to Monomeric Units in Chemical Structure 389</p> <p>18.4.5 Semi-Synthetic Gums 390</p> <p>18.5 Composition of Natural Gums 390</p> <p>18.6 Extraction and Purification of Natural Gums 390</p> <p>18.7 Modification and Hydrolysis of Natural Gums 390</p> <p>18.8 Medical Applications of Gums-Based Bio-Nanostructures 390</p> <p>18.8.1 Conductive Adhesive Properties and Pharmaceutical Applications 391</p> <p>18.8.2 Application in Imaging and Cell Studies 393</p> <p>18.8.3 Application in Sutures 393</p> <p>18.8.4 Biomaterials for Implantation 394</p> <p>18.9 Conclusions 395</p> <p>References 395</p> <p><b>19 Alginates: Properties and Applications 399<br /></b><i>Sapna Raghav, Pallavi Jain and Dinesh Kumar</i></p> <p>19.1 Introduction 399</p> <p>19.2 Properties of Sodium Alginate (Na-Alg) 400</p> <p>19.2.1 Thickening Property of Alginates 401</p> <p>19.2.2 Gelling Property of Alginates 401</p> <p>19.2.3 Film-Forming Property 402</p> <p>19.2.4 Lipophilicity 402</p> <p>19.2.5 Solubility 402</p> <p>19.2.6 pH Sensitivity 402</p> <p>19.3 Chemical Properties 402</p> <p>19.4 Applications 403</p> <p>19.4.1 Bone Tissue Engineering 404</p> <p>19.4.2 Pharmaceutical Applications 405</p> <p>19.4.2.1 Small Chemical Drug Delivery 405</p> <p>19.4.2.2 Protein Delivery 406</p> <p>19.4.3 Wound Dressing 406</p> <p>19.4.4 Vaccine Delivery 408</p> <p>19.4.5 Water Treatment Application 410</p> <p>19.4.6 Alginate for Anion Removal 410</p> <p>19.5 Conclusions and Prospects 414</p> <p>Acknowledgments 414</p> <p>Abbreviations 414</p> <p>References 414</p> <p><b>20 Marine Polysaccharides: Properties and Applications 423<br /></b><i>Olugbenga Samuel Michael, Charles Oluwaseun Adetunji, Ayodele Eugene Ayeni, Muhammad Akram, Inamuddin, Juliana Bunmi Adetunji, Mathew Olaniyan and Musa Abidemi Muhibi</i></p> <p>20.1 Introduction 424</p> <p>20.2 Marine Bacteria That Produce Polysaccharides 425</p> <p>20.3 Marine Fungi That Produce Polysaccharide 431</p> <p>20.4 Production, Extraction and Purification of Polysaccharides 431</p> <p>20.4.1 Solid State Fermentation 432</p> <p>20.4.2 Submerged Fermentation 432</p> <p>20.4.3 Extraction and Purification of Polysaccharides 432</p> <p>20.5 Characterization via Molecular, Biochemical and Cultural Characterization of Marine Polysaccharides 433</p> <p>20.6 Conclusion and Future Recommendation to Knowledge 434</p> <p>References 434</p> <p><b>21 Polysaccharides: Promising Constituent for the Preparation of Nanomaterials 441<br /></b><i>Rafeeya Shams, Quratul Eain Hyder Rizvi, Aamir Hussain Dar, Ishrat Majid, Shafat Ahmad Khan and Anurag Singh</i></p> <p>21.1 Introduction 441</p> <p>21.1.1 Classification and Types of Nanomaterials 442</p> <p>21.2 Preparation of Polysaccharide-Dependent Nanomaterials 445</p> <p>21.2.1 Electrospinning 445</p> <p>21.2.2 Dip Coating, Film Casting, and Physical Mixing 446</p> <p>21.2.3 Layer by Layer Assembly 447</p> <p>21.2.4 Ionotropic Gelation, Colloidal Assembly and Coprecipitation 447</p> <p>21.2.5 <i>In Situ </i>NP Preparation 447</p> <p>21.2.6 Ionotropic Gelation 448</p> <p>21.3 Biocompatibility of Carbon-Based Nanomaterials 451</p> <p>21.4 Conclusions and Summary 452</p> <p>References 452</p> <p><b>22 Anticancer Potential of Polysaccharides 459<br /></b><i>Ali Raza, Javed Iqbal, Muhammad Usman Munir, Anila Asif </i><i>and Arsalan Ahmed</i></p> <p> </p> <p>22.1 Introduction 459</p> <p>22.2 Mode of Action 460</p> <p>22.2.1 Cell-Cycle Arrest 460</p> <p>22.2.2 Receptor 460</p> <p>22.2.3 Immunomodulatory Effect 461</p> <p>22.2.4 Chemotherapy Enhancement 461</p> <p>22.2.5 Mitochondrial Membrane Inhibition 461</p> <p>22.2.6 Free Radicals Capture 462</p> <p>22.3 Polysaccharides in Cancer Treatment 462</p> <p>22.3.1 Lung Cancer 463</p> <p>22.3.2 Blood Cancer 464</p> <p>22.3.3 Liver Cancer 465</p> <p>22.3.4 Gastric and Colon Cancer 465</p> <p>22.3.5 Bladder and Kidney Cancer 466</p> <p>22.3.6 Breast Cancer 466</p> <p>22.3.7 Cervical Cancer 467</p> <p>22.4 Polysaccharides in Conventional Therapies 468</p> <p>22.4.1 Chemotherapy 468</p> <p>22.4.2 Radiotherapy 469</p> <p>22.4.3 Surgery 469</p> <p>22.4.4 Phototherapy 469</p> <p>22.4.5 Drug Delivery 469</p> <p>22.4.6 Bioimaging 470</p> <p>22.4.7 Food Supplement 470</p> <p>22.5 Concluding Remarks and Future Trends 471</p> <p>References 471</p> <p><b>23 Polysaccharide-Based Membrane for Packaging Applications 477<br /></b><i>Saumya Pandey</i></p> <p>23.1 Introduction 477</p> <p>23.2 Polysaccharides as Biomaterials for Biodegradable Packaging 478</p> <p>23.2.1 Polysaccharides Extracted From Animals 481</p> <p>23.2.1.1 Chitin and Chitosan 481</p> <p>23.2.2 Polysaccharides Extracted From Plants 481</p> <p>23.2.2.1 Cellulose 481</p> <p>23.2.2.2 Pectin 482</p> <p>23.2.2.3 Starch 483</p> <p>23.2.2.4 Galactomannans 484</p> <p>23.2.3 Polysaccharides Extracted From Algae 484</p> <p>23.2.3.1 Carrageenan 484</p> <p>23.2.3.2 Alginate 484</p> <p>23.2.4 Polysaccharides Synthesized by Microorganisms 485</p> <p>23.2.4.1 Pullulan 485</p> <p>23.2.4.2 Gellan Gum 485</p> <p>23.2.4.3 Xanthan Gum 486</p> <p>23.2.4.4 FucoPol 486</p> <p>23.3 Properties of Polysaccharide-Based Packaging Film or Coating 486</p> <p>23.3.1 Barrier Properties of Film or Coatings 486</p> <p>23.3.2 Mechanical Properties of the Film 488</p> <p>23.4 Polysaccharides-Based Nanocomposites Packaging 489</p> <p>23.5 Polysaccharides-Based Films and Coatings in Food Packaging Applications 490</p> <p>23.5.1 Food Preservation and Self-Life Extension 490</p> <p>23.5.2 Antimicrobial Coating 490</p> <p>23.5.3 Delaying of Post-Harvest Ripening 491</p> <p>23.5.4 Restoring Color, Aroma and Nutritional Value 491</p> <p>23.5.5 Antioxidant Properties 491</p> <p>23.6 Conclusion and Prospects 492</p> <p>References 493</p> <p><b>24 Applications of Polysaccharides in Cancer Treatment 501<br /></b><i>Nivedita Pujari S., Joy Hoskeri H., Anand I. Torvi and Arun K. Shettar</i></p> <p>24.1 Introduction 501</p> <p>24.2 Types of Polysaccharides Used in Cancer Treatment 502</p> <p>24.2.1 Animal Polysaccharides 502</p> <p>24.2.2 Vegetal Polysaccharides 503</p> <p>24.2.3 Microorganism and Fungi Polysaccharides 503</p> <p>24.3 Mechanism of Polysaccharides as Anticancer Agent 504</p> <p>24.3.1 Actions of Polysaccharides as Immunological Functioning 504</p> <p>24.3.2 Role of Polysaccharides in Cell Signaling 505</p> <p>24.3.3 Effect of Polysaccharides in Apoptosis and Cell Cycle Arrest 506</p> <p>24.3.4 Antitumor Effect of Polysaccharides 506</p> <p>24.4 Usage of Polysaccharides in Preclinical and Clinical Models of Cancer 507</p> <p>24.4.1 <i>In-Vitro </i>Cell Line Model 507</p> <p>24.4.2 Polysaccharides as Antitumor/Anticancer in Animal Model Study 508</p> <p>24.4.3 Clinical Trials of Polysaccharides in Cancer Treatment 508</p> <p>24.5 Conclusion and Future Perspectives 510</p> <p>References 510</p> <p><b>25 Application of Chitosan-Based Catalysts for Heterocycles Synthesis and Other Reactions 517<br /></b><i>Yadavalli Venkata Durga Nageswar, Nelson L.C. Domingues, Ramesh Katla and Rakhi Katla</i></p> <p>25.1 Introduction 517</p> <p>25.2 Recent Research Reports 518</p> <p>25.2.1 Furans 518</p> <p>25.2.2 Pyrazoles 518</p> <p>25.2.3 Imidazoles 519</p> <p>25.2.4 Oxazoles 520</p> <p>25.2.5 Thiazoles 521</p> <p>25.2.6 Triazoles 522</p> <p>25.2.7 Tetrazoles 523</p> <p>25.2.8 Pyridines 524</p> <p>25.2.9 Quinolines 524</p> <p>25.2.10 Pyrazines 525</p> <p>25.2.11 Pyrimidines 525</p> <p>25.2.12 Quinazolines 527</p> <p>25.2.13 Phthalazines 527</p> <p>25.2.14 Perimidines 527</p> <p>25.2.15 Pyrans 528</p> <p>25.2.16 Coumarins 530</p> <p>25.2.17 Chromenes 530</p> <p>25.2.18 Other Reactions 531</p> <p>25.2.18.1 Oxidations 531</p> <p>25.2.18.2 Reductions 533</p> <p>25.2.18.3 Coupling/Condensation Reactions 533</p> <p>25.2.18.4 Isomerization 537</p> <p>25.2.18.5 Ring Opening 538</p> <p>25.3 Conclusion 538</p> <p>References 539</p> <p><b>26 Preparation and Applications of Polysaccharide-Based Composites 543<br /></b><i>Sadaf Ahmad, Bushra Anees Palvasha, Bakar bin Khatab Abbasi, Muhammad Shahid Nazir, Majid Niaz Akhtar, Zaman Tahir and Mohd Azmuddin Abdullah</i></p> <p>26.1 Introduction 544</p> <p>26.2 Types 544</p> <p>26.2.1 Cellulose 544</p> <p>26.2.2 Starch 545</p> <p>26.2.3 Glycogen 545</p> <p>26.2.4 Chitin 545</p> <p>26.2.5 Pectin 546</p> <p>26.3 Importance 546</p> <p>26.4 Fabrication and Applications of Polysaccharide-Inorganic-Based Composites 547</p> <p>26.4.1 Cellulose–Inorganic Materials 547</p> <p>26.4.2 Starch–Inorganic Materials 553</p> <p>26.4.3 Pectin–Inorganic Materials 557</p> <p>26.4.4 Chitin and Chitosan–Inorganic Materials 559</p> <p>26.4.5 Polysaccharides–Metal Organic Frameworks 561</p> <p>26.5 Recent Applications 564</p> <p>26.6 Conclusion 565</p> <p>References 566</p> <p><b>27 Polysaccharide-Based Liquid Crystals 573<br /></b><i>Sumaira Saleem, Gulzar Muhammad, Muhammad Mudassir Iqbal, Muhammad Ajaz Hussain, Muhammad Arshad Raza, Zahid Shafiq and Haseeba Razzaq</i></p> <p>27.1 Introduction 573</p> <p>27.2 Polysaccharides-Based Liquid Crystals 575</p> <p>27.2.1 Cellulose-Based Liquid Crystals 575</p> <p>27.2.2 Liquid Crystals From Cellulose Derivatives 578</p> <p>27.2.3 Amylose-Based Liquid Crystals 579</p> <p>27.2.4 Dextrin-Based Liquid Crystals 582</p> <p>27.2.5 Chitin-Based Liquid Crystals 584</p> <p>27.2.6 Schizophyllan-Based Liquid Crystals 585</p> <p>27.3 Conclusion 586</p> <p>References 586</p> <p><b>28 Patents on Polysaccharide Applications 591<br /></b><i>Nadhratun Naiim Mobarak, Sharifah Nabihah Syed Jaafar and Mohamad Azuwa Mohamed</i></p> <p>28.1 Introduction 591</p> <p>28.2 Polysaccharides in Medical Application 595</p> <p>28.3 Polysaccharides in Cosmetic Application 597</p> <p>28.4 Polysaccharides in Battery Components 600</p> <p>28.5 Polysaccharides in Paper Manufacture 601</p> <p>28.6 Conclusion 601</p> <p>References 602</p> <p><b>29 Applications of Polysaccharides in Controlled Release Drug Delivery System 607<br /></b><i>Muhammad Harris Shoaib, Muhammad Sikandar, Farrukh Rafiq Ahmed, Fatima Ramzan Ali, Faaiza Qazi, Rabia Ismail Yousuf, Asma Irshad, Sabahat Jabeen and Kamran Ahmed</i></p> <p>29.1 Introduction 607</p> <p>29.2 Polysaccharides From Plant Sources and Their Derivatives 608</p> <p>29.2.1 Cellulose 608</p> <p>29.2.2 Cellulose Derivatives 609</p> <p>29.2.2.1 Cellulose Ethers 609</p> <p>29.2.2.2 Cellulose Esters 612</p> <p>29.2.3 Hemicellulose 613</p> <p>29.2.3.1 Mannans 614</p> <p>29.2.4 Starch 617</p> <p>29.2.5 Pectin 618</p> <p>29.2.6 Lignin 619</p> <p>29.2.7 Inulin 620</p> <p>29.3 Gums 620</p> <p>29.3.1 Exudate Gums 620</p> <p>29.3.1.1 Gum Arabic (Gum Acacia) 620</p> <p>29.3.1.2 Gum Tragacanth 621</p> <p>29.3.1.3 Gum Karaya 621</p> <p>29.3.2 Mucilage Gums 622</p> <p>29.3.2.1 Okra Gum 622</p> <p>29.3.2.2 Khaya Gum 622</p> <p>29.3.2.3 Hakea Gum 622</p> <p>29.3.2.4 Cassia tora Gum 623</p> <p>29.3.2.5 Albizia Gum 623</p> <p>29.3.2.6 Prunus cerasoides Gum 623</p> <p>29.3.2.7 Tamarind Gum 623</p> <p>29.3.2.8 Cissus populnea Gum 624</p> <p>29.4 Polysaccharides From Algal Sources 624</p> <p>29.4.1 Alginates 624</p> <p>29.4.2 Galactans 626</p> <p>29.4.3 Carrageenan 626</p> <p>29.4.4 Agar 627</p> <p>29.4.5 Agarose 628</p> <p>29.5 Polysaccharides From Fungal Sources 629</p> <p>29.5.1 Scleroglucan 629</p> <p>29.5.2 Beta-Glucan 629</p> <p>29.5.3 Pullulan 630</p> <p>29.6 Polysaccharides From Animals Sources and Their Derivatives 631</p> <p>29.6.1 Chitin 631</p> <p>29.6.2 Chitosan 632</p> <p>29.6.3 Hyaluronic Acid 633</p> <p>29.6.4 Glycogen 633</p> <p>29.6.5 Chondroitin Sulfate 633</p> <p>29.6.6 Dermatan Sulfate 634</p> <p>29.6.7 Gelatin 634</p> <p>29.7 Polysaccharides From Microorganisms 635</p> <p>29.7.1 Curdlan 635</p> <p>29.7.2 Xanthan Gum 636</p> <p>29.7.3 Gellan Gum 637</p> <p>References 637</p> <p><b>30 Applications of Polysaccharides in Nutrition and Medicine 657<br /></b><i>Nivedita Pujari S., Arun K. Shettar and Joy Hoskeri H.</i></p> <p>30.1 Introduction 657</p> <p>30.2 Sources of Polysaccharides 658</p> <p>30.2.1 Polysaccharides in Dietary Fibers 658</p> <p>30.2.2 Polysaccharides in Plants 659</p> <p>30.2.3 Polysaccharides in Algae and Lichens 659</p> <p>30.2.4 Polysaccharides in Fungi 660</p> <p>30.2.5 Polysaccharides From Bacteria 661</p> <p>30.2.6 Polysaccharides From Other Sources 662</p> <p>30.3 Role of Polysaccharides in Nutrition 662</p> <p>30.3.1 Polysaccharides in Food 662</p> <p>30.3.2 Polysaccharides as Energy Sources 663</p> <p>30.3.3 Health Impact of Polysaccharides 664</p> <p>30.3.4 Nutritional Aspect of Polysaccharides 664</p> <p>30.4 Biomedical Applications of Polysaccharides 665</p> <p>30.4.1 Polysaccharides as Antimicrobial and Antiviral 665</p> <p>30.4.2 Polysaccharides as Antitumor/Anticancer 666</p> <p>30.4.3 Polysaccharides as Anti-Obesity and Anti-Hypercholesterolemic Agents 667</p> <p>30.4.4 Polysaccharides as Antidiabetic Agents 669</p> <p>30.4.5 Polysaccharides as Immune Modulator Agent 670</p> <p>30.4.6 Polysaccharides as Anti-Inflammatory Agent 671</p> <p>30.4.7 Polysaccharides as Neuro-Protective Agent 672</p> <p>30.4.8 Polysaccharides as a Source of Antioxidant 672</p> <p>30.4.9 Polysaccharides in Wound Healing and Wound Dressing 673</p> <p>30.5 Conclusion 674</p> <p>References 674</p> <p><b>31 Synthetic Polysaccharide-Based Vaccines: Progress and Achievements 683<br /></b><i>Rafig Gurbanov</i></p> <p>31.1 A Brief History of Vaccination 683</p> <p>31.2 The Leverage of Synthetic Polysaccharide-Based Vaccines Over Natural Polysaccharide-Based Vaccines 684</p> <p>31.3 The Principles of Synthetic Polysaccharide-Based Vaccines 686</p> <p>31.3.1 Tumor Vaccines 689</p> <p>31.3.2 Leishmaniasis Vaccines 690</p> <p>31.3.3 Human Immunodeficiency Virus Vaccines 690</p> <p>31.3.4 Bacterial Vaccines 691</p> <p>31.4 The Opportunities and Prospects of Synthetic Polysaccharide-Based Vaccine Technologies 692</p> <p>References 694</p> <p><b>32 Polysaccharides Derived From Natural Sources: A Panacea to Health and Nutritional Challenges 701<br /></b><i>Charles Oluwaseun Adetunji, Muhammad Akram, Olugbenga Samuel Michael, Khuram Shahzad, Ayodele Eugene Ayeni, Sidra Hasan, Juliana Bunmi Adetunji, Syed Muhammad Hasan, Inamuddin, Mathew Olaniyan and Musa Abidemi Muhibi</i></p> <p>32.1 Introduction 702</p> <p>32.2 Different Types of Polysaccharides Derived From Different Natural Sources 703</p> <p>32.2.1 Polysaccharides Derived From Plants and Their Applications 704</p> <p>32.2.2 Animal Derived Polysaccharides and Their Applications 705</p> <p>32.2.2.1 Chitosan and Chitin 705</p> <p>32.2.2.2 Heparin and Heparin Sulfates 706</p> <p>32.2.2.3 Hyaluronic Acid 707</p> <p>32.2.3 Microorganisms Derived Polysaccharides and Their Applications 707</p> <p>32.2.3.1 Alginate 707</p> <p>32.2.3.2 Dextran 708</p> <p>32.2.3.3 Fucoidans 708</p> <p>32.2.3.4 Spirulina 708</p> <p>32.2.4 Homoglycans 709</p> <p>32.2.4.1 Starch and Hetastarch 709</p> <p>32.2.4.2 Cellulose 709</p> <p>32.2.4.3 Inulin 710</p> <p>32.2.4.4 Chitin and Chitosan 710</p> <p>32.2.4.5 Glycogen 712</p> <p>32.2.4.6 Heteroglycans and Other Polysaccharides 712</p> <p>32.2.4.7 Glycosaminoglycans Significance 715</p> <p>32.2.4.8 Chondroitin Sulfates 715</p> <p>32.2.4.9 Hyaluronic Acid 715</p> <p>32.2.4.10 Alginic Acid 715</p> <p>32.2.4.11 Mucopolysaccharidoses 717</p> <p>32.3 Production, Extraction and Purification of Polysaccharides 718</p> <p>32.3.1 Solid State Fermentation 719</p> <p>32.3.2 Submerged Fermentation 719</p> <p>32.3.3 Extraction and Purification Process of Polysaccharides 720</p> <p>32.4 Specific Examples of Polysaccharides and Their Various Applications in Nutrition and Medicine 720</p> <p>32.4.1 Schizophyllan 720</p> <p>32.4.1.1 Antitumor Activity of Schizophyllan 721</p> <p>32.4.1.2 Anti-Inflammatory Activity of Schizophyllan 721</p> <p>32.4.1.3 Immunomodulatory Activity of Schizophyllan 721</p> <p>32.4.1.4 Prebiotic Potential of Schizophyllan 722</p> <p>32.4.2 Pleuran and Others Polysaccharides From <i>Pleurotus </i>spp. 722</p> <p>32.4.2.1 Specific Nutritional and Beneficial Functions of Pleurotus Polysaccharides 722</p> <p>32.4.3 Scleroglucan 723</p> <p>32.4.3.1 Applications for Nutritional and Medicinal Purposes Derived From Scleroglucan 723</p> <p>32.4.4 Curdlan 724</p> <p>32.4.5 Other Essential Polysaccharides With Medical Significance 725</p> <p>32.5 Conclusion and Recommendation to Knowledge 725</p> <p>References 725</p> <p>Index 739</p>
<p><b>Inamuddin PhD</b> is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.</p><p><b>Mohd Imran Ahamed PhD</b> is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.</p><p><b>Rajender Boddula</b> PhD is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.</p><p><b>Tariq Altalhi PhD</b> is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.</p>
<p><b>A unique and comprehensive resource serving both researcher and industrialist</b></p><p>Polysaccharides are versatile and abundant biopolymers derived from natural resources which have emerged as a sustainable and eco-friendly alternative to conventional polymers or traditional plastics.</p><p>This book presents the entire spectrum of polysaccharide-related topics—from basic concepts to commercial market applications. The 32 chapters cover various sources, classifications, properties, characterizations, processing methods, rheologies and fabrica­tions of polysaccharide-based materials and their composites and gels. Also covered are the applications of polysaccharides in cosmetics, food science, drug delivery, biomedicine, biofuel production, packaging, chromatography and environmental remediation. In addition to incorporating industrial applications and filling in the gap between exploratory works in the laboratory and viable applications in related ventures, this book also reviews the fabrication of inorganic and carbon nanomaterials from polysaccharides.</p><p><b>Audience</b></p><p>The book will have a wide readership among academic researchers and industrial engineers and technologists working on polysaccharides-based solutions in chemistry, biotechnology, nanotechnology, pharmaceutical sciences, polymer science, food science, environmental engineering, agriculture and the biomedical field.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €