Details

Polymer Coatings


Polymer Coatings

A Guide to Chemistry, Characterization, and Selected Applications
1. Aufl.

von: Gijsbertus de With

153,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 03.07.2018
ISBN/EAN: 9783527806331
Sprache: englisch
Anzahl Seiten: 600

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A practical guide to polymer coatings that covers all aspects from materials to </b><b>applications</b><b> </b></p> <p><i>Polymer Coatings</i> is a practical resource that offers an overview of the fundamentals to the synthesis, characterization, deposition methods, and recent developments of polymer coatings. The text includes information about the different polymers and polymer networks in use, resins for solvent- and water-based coatings, and a variety of additives. It presents deposition methods that encompass frequently used mechanical and electrochemical approaches, in addition to the physical-chemical aspects of the coating process. The author covers the available characterization methods including spectroscopic, morphological, thermal and mechanical techniques.</p> <p>The comprehensive text also reviews developments in selected technology areas such as electrically conductive, anti-fouling, and self-replenishing coatings. The author includes insight into the present status of the research field, describes systems currently under investigation, and draws our attention to yet to be explored systems. This important text:</p> <p>• Offers a thorough overview of polymer coatings and their applications</p> <p>• Covers different classes of materials, deposition methods, coating processes, and ways of characterization</p> <p>• Contains a text that is designed to be accessible and helps to apply the acquired knowledge immediately</p> <p>• Includes information on selected areas of research with imminent application potential for functional coatings</p> <p>Written for chemists in industry, materials scientists, polymer chemists, and physical chemists, <i>Polymer Coatings</i> offers a text that contains the information needed to gain an understanding of the charaterization and applications of polymer coatings.</p>
<p>Preface xv</p> <p>Acknowledgments xvii</p> <p>List of Most Important Symbols and Abbreviations xix</p> <p><b>1 Introduction 1</b></p> <p>1.1 Scope 1</p> <p>1.2 The Importance of Polymer Coatings 2</p> <p>1.3 The General Constitution of Polymer Coatings 5</p> <p>1.3.1 Binders and Crosslinkers 6</p> <p>1.3.2 Pigments and Fillers 8</p> <p>1.3.3 Additives 12</p> <p>1.3.4 Solvents 12</p> <p>1.4 Coating Requirements 14</p> <p>1.5 Outline and Approach 15</p> <p>References 16</p> <p>Further Reading 16</p> <p><b>2 Polymers and Network Characteristics 19</b></p> <p>2.1 Polymers 19</p> <p>2.1.1 Polymer Conformations 22</p> <p>2.1.2 Entanglements 23</p> <p>2.1.3 Crystallinity 24</p> <p>2.1.4 Amorphous Polymers 26</p> <p>2.2 Polymer Formation 30</p> <p>2.2.1 Step-growth Polymerization 31</p> <p>2.2.2 Branching and Gelation 33</p> <p>2.2.3 Limits to the Preparation of Branched Polymers 36</p> <p>2.2.4 Chain-growth Polymerization 38</p> <p>2.3 Polymer Networks 41</p> <p>2.4 Final Remarks 45</p> <p>References 45</p> <p>Further Reading 46</p> <p><b>3 Thermoset Resins 47</b></p> <p>3.1 Petro-based Thermoset Resins 47</p> <p>3.2 Epoxy Systems 47</p> <p>3.3 Acrylates and Acrylics 51</p> <p>3.4 Isocyanates 53</p> <p>3.5 Polyurethanes 55</p> <p>3.6 Polyesters 56</p> <p>3.7 Renewable Raw Materials 57</p> <p>3.8 Drying Oils 63</p> <p>3.9 Alkyds 65</p> <p>References 68</p> <p>Further Reading 69</p> <p><b>4 Basic Coating Formulations 71</b></p> <p>4.1 Coating Compositions in General 71</p> <p>4.2 Solventborne Formulations 72</p> <p>4.2.1 Solventborne High Solids Formulations 75</p> <p>4.2.2 Chemistries of Solventborne High Solids Formulations 80</p> <p>4.3 Waterborne Formulations 85</p> <p>4.3.1 Chemistries of Waterborne Formulations 90</p> <p>4.3.2 Challenges and Applications of Waterborne Formulations 93</p> <p>4.4 Radiation Curing Formulations 96</p> <p>4.4.1 Photoinitiators 97</p> <p>4.4.2 Chemistries of Radiation Curing Formulations 99</p> <p>4.4.3 Chemistries of Powder Coating Formulations 103</p> <p>4.4.4 Pros and Cons of Radiation Curing 105</p> <p>4.5 Final Remarks 106</p> <p>References 108</p> <p>Further Reading 108</p> <p><b>5 Additives and Particulates 109</b></p> <p>5.1 Types of Additives 109</p> <p>5.2 Thickeners 110</p> <p>5.2.1 Inorganic Thickeners 110</p> <p>5.2.2 Organic Thickeners 112</p> <p>5.3 Surface Active Agents 116</p> <p>5.3.1 Wetting and Dispersing Agents 117</p> <p>5.3.2 Antifoaming Agents 117</p> <p>5.3.3 Adhesion Promoters 118</p> <p>5.4 Surface Modifiers 120</p> <p>5.5 Leveling and Coalescing Agents 120</p> <p>5.6 Catalytically Active Additives 121</p> <p>5.6.1 Dryers 122</p> <p>5.6.2 Other Catalysts 123</p> <p>5.7 Special Effect Additives 128</p> <p>5.8 Particulates 130</p> <p>References 133</p> <p>Further Reading 134</p> <p><b>6 Application Methods 135</b></p> <p>6.1 Conventional Deposition Techniques 135</p> <p>6.1.1 Brushing and Rolling 135</p> <p>6.1.2 Spraying 136</p> <p>6.2 Laboratory and Industrial Methods 138</p> <p>6.2.1 Doctor Blade Coating 138</p> <p>6.2.2 Spin Coating 139</p> <p>6.2.3 Dip Coating 141</p> <p>6.3 Powder Coating 142</p> <p>6.4 An Example: Automotive Coatings 147</p> <p>6.4.1 Electrodeposition 147</p> <p>6.4.2 The Automotive Coating Buildup 150</p> <p>6.5 Network Formation Assessment 151</p> <p>References 152</p> <p>Further Reading 152</p> <p><b>7 Physical–Chemical Aspects 155</b></p> <p>7.1 Intermolecular and Mesoscopic Interactions 155</p> <p>7.1.1 Intermolecular Interactions 155</p> <p>7.1.2 Mesoscopic Interactions: Continuum Aspects 159</p> <p>7.1.3 Lifshitz Theory 164</p> <p>7.1.4 The Derjaguin Approximation 166</p> <p>7.1.5 Mesoscopic Interactions: Molecular Aspects 167</p> <p>7.2 Polymer Solubility 170</p> <p>7.3 Interfacial Aspects 173</p> <p>7.3.1 Surface Thermodynamics 173</p> <p>7.3.2 Representative Behavior 178</p> <p>7.3.3 Wetting of Ideal Surfaces 181</p> <p>7.3.4 Estimating Surface Helmholtz Energy 184</p> <p>7.3.5 Wetting of Real Surfaces 189</p> <p>7.4 Dispersions 193</p> <p>7.5 Emulsions 196</p> <p>7.5.1 Basic Types of Emulsions 196</p> <p>7.5.2 The HLB Concept 198</p> <p>7.6 Coagulation Kinetics 202</p> <p>7.6.1 Unhindered Coagulation 202</p> <p>7.6.2 Hindered Coagulation 204</p> <p>7.7 Self-assembly 207</p> <p>7.7.1 SCF Computations 207</p> <p>7.7.2 An Example: Surfactant Modeling 209</p> <p>7.7.3 Another Example: Fluorine Segregation 212</p> <p>7.8 Final Remarks 213</p> <p>References 213</p> <p>Further Reading 219</p> <p><b>8 Chemical and Morphological Characterization 221</b></p> <p>8.1 The Need for Characterization 221</p> <p>8.2 IR and Raman Spectroscopy 222</p> <p>8.3 NMR 227</p> <p>8.4 Functional Group Analysis 236</p> <p>8.5 XPS, SIMS, and LEIS 239</p> <p>8.6 SEC 241</p> <p>8.7 MALDI–MS 242</p> <p>8.8 XRD 245</p> <p>8.9 Optical Microscopy 250</p> <p>8.9.1 Phase Contrast Microscopy 253</p> <p>8.9.2 Fluorescence Microscopy 254</p> <p>8.9.3 Confocal Scanning Microscopy 254</p> <p>8.9.4 Polarized Light Microscopy 255</p> <p>8.10 Electron Microscopy 256</p> <p>8.10.1 TEM 256</p> <p>8.10.2 SEM 259</p> <p>8.10.3 STEM 260</p> <p>8.10.4 Sample Preparation and Related Issues 260</p> <p>8.11 Surface Probe Microscopy 262</p> <p>8.12 Thickness and Beyond 265</p> <p>8.13 Final Remarks 266</p> <p>References 266</p> <p>Further Reading 271</p> <p><b>9 Thermal and Mechanical Characterization 273</b></p> <p>9.1 Thermal Characterization 273</p> <p>9.1.1 DSC 273</p> <p>9.1.2 TGA 277</p> <p>9.2 Permeability–Diffusivity–Solubility Analysis 278</p> <p>9.3 Mechanical Constitutive Behavior 285</p> <p>9.3.1 Analogous Models 288</p> <p>9.3.2 Generalization: The Boltzmann Superposition Principle 291</p> <p>9.3.3 Dynamic Response 293</p> <p>9.3.4 The Time–Temperature Equivalence 296</p> <p>9.3.5 The Free Volume and Other Approaches 297</p> <p>9.4 A Brief Review of Experimental Data 300</p> <p>9.4.1 Local and Cooperative Processes 301</p> <p>9.4.2 Chain Motion 303</p> <p>9.4.3 Mechanisms in Partially Crystalline Materials 306</p> <p>9.5 Mechanical Characterization 307</p> <p>9.5.1 DMTA 307</p> <p>9.6 Hardness 312</p> <p>9.6.1 Vickers, Knoop, Berkovich, and Brinell Hardness 312</p> <p>9.6.2 Nanoindentation 314</p> <p>9.6.3 Estimating the Stress–Strain Curve 315</p> <p>9.6.4 Empirical Hardness Tests 316</p> <p>9.7 Internal Stress Analysis 317</p> <p>9.8 Adherence 319</p> <p>9.8.1 Thermodynamic Considerations 319</p> <p>9.8.2 Thermomechanical Considerations: Monoliths 323</p> <p>9.8.3 Thermomechanical Considerations: Bimaterials 330</p> <p>9.8.4 Coating Adherence 334</p> <p>9.8.5 Testing Coating Adherence 337</p> <p>9.8.6 Practical Tests 341</p> <p>9.9 Final Remarks 342</p> <p>References 342</p> <p>Further Reading 345</p> <p><b>10 Rheological Aspects 347</b></p> <p>10.1 The Importance of Rheology 347</p> <p>10.2 Rheological Characterization 348</p> <p>10.2.1 Hydrodynamic Interactions 352</p> <p>10.2.2 Dissolvable Polymers 359</p> <p>10.3 Rheological Control of Paints 362</p> <p>10.3.1 Powder Coatings 362</p> <p>10.3.2 Thickening in Waterborne Paints 363</p> <p>10.4 Viscosity of Paints During Curing 366</p> <p>References 368</p> <p>Further Reading 370</p> <p><b>11 Appearance 371</b></p> <p>11.1 Defects 371</p> <p>11.2 The Characterization of Color 379</p> <p>11.2.1 Light Sources 380</p> <p>11.2.2 Color Sensing, Perception, and Quantification 381</p> <p>11.2.3 Scattering, Absorption, and Color 384</p> <p>11.2.4 Addition and Subtraction Systems 387</p> <p>11.2.5 Color Tolerancing 391</p> <p>11.3 The Characterization of Feel or Haptic Property 393</p> <p>11.3.1 QDA of Haptic Coatings: An Example 394</p> <p>References 397</p> <p>Further Reading 398</p> <p><b>12 Electrically Conductive Coatings 399</b></p> <p>12.1 Typical Applications 399</p> <p>12.2 Electrical Conductivity Measurements 401</p> <p>12.3 Intrinsically Conductive Polymers 403</p> <p>12.3.1 Some Conductivity Theory 406</p> <p>12.3.2 Simple Band Theory 407</p> <p>12.3.3 Doping 413</p> <p>12.3.4 Hopping 416</p> <p>12.4 An Example: P3HT/PCBM Photovoltaics 418</p> <p>12.5 Conductive Composites 423</p> <p>12.5.1 A Glimpse of Percolation Theory 423</p> <p>12.5.2 Other Approaches 428</p> <p>12.5.3 The Influence of Aspect Ratio 430</p> <p>12.5.4 Conductive Particles 431</p> <p>12.6 Some Examples of Conductive Composite Coatings 434</p> <p>References 438</p> <p>Further Reading 441</p> <p><b>13 Marine Anti-fouling Coatings 443</b></p> <p>13.1 Marine Biofouling 443</p> <p>13.2 Evolution of Marine Coatings toward Green Anti-fouling Approaches 445</p> <p>13.3 Principles for Preventing Adhesion or Promoting Detachment of Biofoulants 448</p> <p>13.4 Nontoxic, Non-biocide-release Anti-fouling Coatings 451</p> <p>13.4.1 Detachment of Biofoulants 451</p> <p>13.4.1.1 Silicone-based Materials 453</p> <p>13.4.1.2 Fluorine-based Materials 458</p> <p>13.4.1.3 Combined Fluorine–Silicone-based Materials 461</p> <p>13.4.2 Preventing Attachment of Biofoulants 462</p> <p>13.4.2.1 PEG-based Materials 463</p> <p>13.4.2.2 Self-assembled Monolayers 465</p> <p>13.4.2.3 Other Approaches 466</p> <p>13.5 Recent and Future Approaches 469</p> <p>13.5.1 Amphiphilic Approach 469</p> <p>13.5.2 Topographic Approach 472</p> <p>13.6 Final Remarks 475</p> <p>References 475</p> <p>Further Reading 479</p> <p><b>14 Self-replenishing and Self-healing Coatings 481</b></p> <p>14.1 Self-healing and Self-replenishing: Scope and Limitations 481</p> <p>14.2 Damage Recovery on Different Length Scales: Preemptive Healing 482</p> <p>14.3 Approaches to Self-healing Coatings 486</p> <p>14.3.1 Encapsulated Liquid Binders and Particles 487</p> <p>14.3.2 Deformation and Recovery in Networks 489</p> <p>14.3.3 Stress Relaxation in Reversible Networks 493</p> <p>14.3.4 Reversible Covalent Networks 498</p> <p>14.4 Industrial Practice 502</p> <p>14.5 Approaches to Self-replenishing Coatings 504</p> <p>14.5.1 Barrier and Corrosion Protection 505</p> <p>14.5.2 Interfacial Bonding Between Dissimilar Materials 506</p> <p>14.6 Self-replenishing Low Surface Energy Coatings 508</p> <p>14.6.1 Low Surface Energy (Hydrophobic) Polymeric Coatings 509</p> <p>14.6.2 Time Recovery of the Surface Self-replenishing 514</p> <p>14.6.3 Surface-structured Superhydrophobic Polymeric Coatings 515</p> <p>14.6.4 Further Remarks 521</p> <p>14.7 Scenarios for Further Options 522</p> <p>14.7.1 Residual Network Reactivity 522</p> <p>14.7.2 Segregation of Interactive Chain Ends 523</p> <p>14.7.3 Multilayer and Graded Coatings 524</p> <p>14.8 Final Remarks 524</p> <p>References 525</p> <p>Further Reading 531</p> <p><b>15 What’s Next 533</b></p> <p>15.1 Generic Problems and Challenges 533</p> <p>15.2 What Else? 535</p> <p>15.3 What’s Next? 537</p> <p>References 538</p> <p>Appendix A: Units, Physical Constants, and Conversion Factors 541</p> <p>Basic and Derived SI Units 541</p> <p>Physical Constants 541</p> <p>Conversion Factors for Non-SI Units 542</p> <p>Prefixes 542</p> <p>Greek Alphabet 542</p> <p>Standard Values 543</p> <p>Appendix B: Data 545</p> <p>Index 549</p>
<p><b>Gijsbertus de With </b>has been full professor in materials science at Eindhoven University of Technology (TU/e) since 1995. After graduating from Utrecht University and receiving his PhD in 1977 from Twente University, he joined Philips Research Laboratories, Eindhoven. In 1985 he was appointed part-time professor and in 1995 he became full professor at TU/e. His research interests include structure and interfacial phenomena related to the chemical and thermomechanical behavior of multi-phase materials. He has (co)-authored more than 350 research papers and holds about 15 patents. Throughout he has cooperated with other researchers, both from academia and industry and co-organized the Coatings Science International conferences from 2004 to 2014. In 2006 his two-volume monograph <i>Structure, Deformation, and Integrity of Materials</i> was published, followed by <i>Liquid-state Physical Chemistry</i> in 2013.</p>
<p><b>A practical guide to polymer coatings that covers all aspects from materials to </b><b>applications</b><b> </b></p> <p><i>Polymer Coatings</i> is a practical resource that offers an overview of the fundamentals to the synthesis, characterization, deposition methods, and recent developments of polymer coatings. The text includes information about the different polymers and polymer networks in use, resins for solvent- and water-based coatings, and a variety of additives. It presents deposition methods that encompass frequently used mechanical and electrochemical approaches, in addition to the physical-chemical aspects of the coating process. The author covers the available characterization methods including spectroscopic, morphological, thermal and mechanical techniques.</p> <p>The comprehensive text also reviews developments in selected technology areas such as electrically conductive, anti-fouling, and self-replenishing coatings. The author includes insight into the present status of the research field, describes systems currently under investigation, and draws our attention to yet to be explored systems. This important text:</p> <p>• Offers a thorough overview of polymer coatings and their applications</p> <p>• Covers different classes of materials, deposition methods, coating processes, and ways of characterization</p> <p>• Contains a text that is designed to be accessible and helps to apply the acquired knowledge immediately</p> <p>• Includes information on selected areas of research with imminent application potential for functional coatings</p> <p>Written for chemists in industry, materials scientists, polymer chemists, and physical chemists, <i>Polymer Coatings</i> offers a text that contains the information needed to gain an understanding of the charaterization and applications of polymer coatings.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €