Details

Plasma Processes and Polymers


Plasma Processes and Polymers

16th International Symposium on Plasma Chemistry Taormina, Italy June 22-27, 2003
1. Aufl.

von: Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer

210,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 06.03.2006
ISBN/EAN: 9783527605576
Sprache: englisch
Anzahl Seiten: 545

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. <br> This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications. <br>
<p>Preface xvii</p> <p>List of Contributors xix</p> <p><b>Part I Plasma Deposition of Thin Films 1</b></p> <p><b>1 Polymer Surface Modification with Monofunctional Groups of Different Type and Density 3<br /> </b><i>J. Friedrich, G. Kühn, R. mix</i></p> <p>1.1 Introduction 3</p> <p>1.2 Experimental 9</p> <p>1.3 Results 10</p> <p>1.3.1 Kinetics of the Deposition of Copolymers 10</p> <p>1.3.2 Variation of the Density of Functional Groups 10</p> <p>1.3.3 Structure and Stability of Copolymers 14</p> <p>1.3.4 Relation between Functional Groups of Copolymers and Surface Energy 15</p> <p>1.3.5 Relation between Functional Groups of Copolymers and Adhesion 15</p> <p>1.4 Discussion 19</p> <p><b>2 RF-Plasma Deposition of SiO<i><sub>X</sub> </i>and a-C:H as Barrier Coatings on Polymers 23</b><br /> <i>D. Hegemann, U. Schütz, C. Oehr</i></p> <p>2.1 Introduction 23</p> <p>2.2 Experimental 24</p> <p>2.3 Results and Discussion 27</p> <p>2.4 Conclusions 35</p> <p><b>3 Upscaling of Plasma Processes for Carboxyl Functionalization 39<br /> </b><i>V. Sciarratta, D. Hegemann, M. Müller, U. Vohrer, C. Oehr</i></p> <p>3.1 Introduction 39</p> <p>3.2 Experimental 40</p> <p>3.2.1 Materials 40</p> <p>3.2.2 Plasma-Deposition Apparatus 40</p> <p>3.2.3 Characterization Techniques 42</p> <p>3.3 Results and Discussion 43</p> <p>3.4 Conclusions 48</p> <p><b>4 Deposition of Fluorocarbon Films on Al and SiO<sub>2 </sub>Surfaces in High-Density Fluorocarbon Plasmas: Selectivity and Surface Wettability 51<br /> </b><i>A. Tserepi, P. Bayiati, E. Gogolides, K. Misiakos, Ch. Cardinaud</i></p> <p>4.1 Introduction 51</p> <p>4.2 Experimental 52</p> <p>4.3 Results and Discussion 54</p> <p>4.3.1 Etching and Deposition in C<sub>4</sub> F<sub>8</sub> Plasmas 54</p> <p>4.3.2 Etching and Deposition Experiments in CHF<sub>3</sub> /CH<sub>4</sub> Plasmas 58</p> <p>4.3.3 FC Film Characterization: Chemical Composition 60</p> <p>4.4 Conclusions 63</p> <p><b>5 Hot-wire Plasma Deposition of Doped DLC Films on Fluorocarbon Polymers for Biomedical Applications 65<br /> </b><i>V.N. Vasilets, A. Hirose, Q. Yang, A. Singh, R. Sammynaiken, Yu.M. Shulga, A.V. Kuznetsov, V.I. Sevastianov</i></p> <p>5.1 Introduction 65</p> <p>5.2 Experimental Details 66</p> <p>5.2.1 Preparation of Samples 66</p> <p>5.2.2 Plasma Deposition Technique 66</p> <p>5.2.3 Surface Characterization 67</p> <p>5.2.4 Platelet-Adhesion Technique 68</p> <p>5.3 Results and Discussion 68</p> <p>5.3.1 Characterization of Deposited Film 68</p> <p>5.3.2 Platelet Adhesion 73</p> <p><b>6 Properties of Silicon Nitride by Room-Temperature Inductively Coupled Plasma Deposition 77<br /> </b><i>H. Zhou, C. Sim, A. Glidle. C. Hodson, R. Kinsey, C. D. W. Wilkinson</i></p> <p>6.1 Introduction 77</p> <p>6.2 Experimental Systems 78</p> <p>6.3 Results and Discussion 79</p> <p>6.4 Conclusions 85</p> <p><b>7 Structural Analysis of Diamond-like Carbon Films Deposited by RF (13.56 MHz) in a Methane Gas Plasma Atmosphere 87<br /> </b><i>M. Ouchabane, M. Aoucher, A. Sekkal, K. Henda and H. Lahmar</i></p> <p>7.1 Introduction 87</p> <p>7.2 Experimental Procedure 88</p> <p>7.2.1 Deposition Apparatus 88</p> <p>7.2.2 Experimental Conditions 89</p> <p>7.3 Results and Discussions 90</p> <p>7.3.1 X-ray Auger Electron Spectroscopy (XAES) 90</p> <p>7.3.2 Electron Energy Loss Spectroscopy (EELS) 91</p> <p>7.4 Conclusion 93</p> <p><b>8 Rate constant of HMDSO + O reaction in plasma afterglow 95<br /> </b><i>Vít Kudrle, Vojtěch Dole?al, Antonín Tálsk™, Jan Janča</i></p> <p>8.1 Introduction 95</p> <p>8.2 Experimental 96</p> <p>8.3 Calculation of the rate constant 97</p> <p>8.4 Results and discussion 99</p> <p>8.5 Conclusion 101</p> <p><b>9 Plasma-Enhanced Thin-Film Deposition On Polycarbonates 103 <br /> </b><i>B. Ulejczyk, T. Opalinska, L. Karpinski, K. Schmidt-Szalowski</i></p> <p>9.1 Introduction 103</p> <p>9.2 Experimental 104</p> <p>9.3 Results 106</p> <p>9.4 Discussion 112</p> <p>9.5 Conclusions 114</p> <p><b>10 Molecular Tailoring Coating on TiO<sub>2</sub> Nanoparticle Surface by Plasma Polymerization 117<br /> </b><i>Jing Zhang, Feng Zhu, Changnian Shi, Li Sun, Ying Wang, Zhan Cheng, Ping Ji, Qinyu Yang, Ying Guo, Rongming Zhou, Hankun Xie, W. J. van Ooij, Jie Lian,Donglu Shi</i></p> <p>10.1 Introduction 117</p> <p>10.2 Experimental 119</p> <p>10.3 Results and Discussions 120</p> <p>10.3.1 Surface Morphology 120</p> <p>10.3.2 Surface Molecular Structure 122</p> <p>10.3.3 Dispersion Behavior of AA-Plasma-Polymer-Coated TiO<sub>2</sub> Nanoparticles 124</p> <p>10.4 Conclusion 127</p> <p><b>Part II Plasma-Grafting of Functional Groups 129</b></p> <p><b>11 Introduction of Acidic Functional Groups onto the Surface of Activated Carbons by Atmospheric-Pressure Nonthermal Plasma 131 <br /> </b><i>Satoshi Kodama and Hidetoshi Sekiguchi</i></p> <p>11.1 Introduction 131</p> <p>11.2 Experimental 132</p> <p>11.2.1 Materials 132</p> <p>11.2.2 Plasma Treatment of the Samples 132</p> <p>11.2.3 Characterization 136</p> <p>11.3 Results and Discussion 137</p> <p>11.3.1 Surface Chemistry 137</p> <p>11.3.2 Surface Morphology 140</p> <p>11.4 Conclusion 142</p> <p><b>12 Treatment of Flexible Polyethylene with Low-pressure Plasma to Improve its Painting Properties 143 <br /> </b><i>Asunción Martínez-García, Alejandra Segura-Domingo, Ana S</i><b><i>á</i></b><i>nchez-Reche, Santiago Gisbert-Soler</i></p> <p>12.1 Introduction 143</p> <p>12.2 Experimental 144</p> <p>12.2.1 Materials 144</p> <p>12.2.2 Experimental Techniques 144</p> <p>12.3 Results and Discussion 145</p> <p>12.3.1 Effect of Treatment Time 145</p> <p>12.3.2 Effect of Plasma Power 150</p> <p>12.3.3 Effect of the Pressure inside the Chamber 152</p> <p>12.3.4 Durability of the Treatment Effect 153</p> <p>12.4 Conclusions 154</p> <p><b>13 Surface Modification of PVDF by Microwave Plasma Treatment for Electroless Metallization 157<br /> </b><i>Mihaela Pascu, Dominique Debarnot, S. Durand, Fabienne Poncin-Epaillard</i></p> <p>13.1 Introduction 157</p> <p>13.2 Materials and Methods 158</p> <p>13.3 Results and Discussion 160</p> <p>13.3.1 Contact-Angle and Weight-Loss Measurements 160</p> <p>13.3.2 Aging Studies 166</p> <p>13.3.3 XPS results 168</p> <p>13.3.4 Titration of the Surface Amino Groups 170</p> <p>13.3.5 Wide-Angle X-ray Diffraction 171</p> <p>13.3.6 Preliminary Results on PVDF Metallization 173</p> <p>13.3.7 Assays on Piezoelectric Coefficient Determination 174</p> <p>13.4 Conclusion 175</p> <p><b>14 Different Performance of Ar, O<sub>2</sub> and CO<sub>2</sub> RF Plasmas in the Adhesion of Thermoplastic Rubber to Polyurethane Adhesive 177<br /> </b><i>Ana B. Ortiz-Magán, M. Mercedes Pastor-Blas, Jos</i><i>é Miguel Martín-Martínez</i></p> <p>14.1 Introduction 177</p> <p>14.2 Experimental 178</p> <p>14.2.1 Materials 178</p> <p>14.2.2 Experimental Techniques 179</p> <p>14.3 Results and Discussion 180</p> <p>14.4 Conclusions 191</p> <p><b>15 Low-temperature Plasma Treatment of Dry Empress-Tree Seeds 193<br /> </b><i>N. Puač, Z.Lj. Petrović, S.?ivković, Z. Giba, D. Grubišić and A.R. Đorđević</i></p> <p>15.1 Introduction 193</p> <p>15.2 Experimental Setup 194</p> <p>15.2.1 Power Transmitted to the Plasma 195</p> <p>15.3 Paulownia tomentosa Steud 197</p> <p>15.4 Results and Discussion 198</p> <p>15.5 Conclusion 202</p> <p><b>16 Ion-induced Chemical and Structural Modification of Polymer Surfaces 205<br /> </b><i>G. Suchaneck, M. Guenther, G. Gerlach, K. Sahre, K.-J. Eichhorn, B. Wolf, A. Deyneka, L. Jastrabik</i></p> <p>16.1 Ion Modification of Polymers 205</p> <p>16.1.1 Modification of Polymer Properties 206</p> <p>16.1.2 Energy Transfer from Ions to Polymer 206</p> <p>16.1.3 Ion-modified Polymers for Sensor Application 206</p> <p>16.1.4 Objective of this Work 207</p> <p>16.2 Experimental 208</p> <p>16.2.1 Sample Preparation 208</p> <p>16.2.2 Evaluation of Structural Changes 209</p> <p>16.2.3 Evaluation of Moisture Uptake 210</p> <p>16.2.4 Electrical Measurements 210</p> <p>16.3 Results and Discussion 211</p> <p>16.3.1 Structural Changes 211</p> <p>16.3.2 Moisture Uptake 216</p> <p>16.3.3 Electrical Conductivity 219</p> <p>16.4 Conclusions 219</p> <p><b>17 Plasma-Enhanced Fluorination of Nitrile Butadiene Elastomer: an XPS study 223<br /> </b><i>A. Tressaud, E. Durand, C. Labrugère</i></p> <p>17.1 Introduction 223</p> <p>17.2 Experimental Procedure 224</p> <p>17.2.1 Elastomer Samples 224</p> <p>17.2.2 Fluorination Procedure: The Plasma-enhanced Fluorination (PEF) 224</p> <p>17.2.3 XPS Characterization 225</p> <p>17.3 Results and Comparison of the XPS Spectra 226</p> <p>17.3.1 Plasma-enhanced Fluorination 226</p> <p>17.3.2 Comparison with Direct F<sub>2</sub>-gas Fluorination 228</p> <p>17.4 Concluding Remarks 231</p> <p><b>18 Plasma-Surface Modification of Styrene-Butadiene Elastomers for Improved Adhesion 233<br /> </b><i>J. Tyczkowski, I. Krawczyk, B. Woźniak</i></p> <p>18.1 Introduction 233</p> <p>18.2 Experimental 236</p> <p>18.2.1 Materials 236</p> <p>18.2.2 Plasma Treatment 236</p> <p>18.2.3 Wet-chemical Treatment 237</p> <p>18.2.4 Surface-characterization Techniques 237</p> <p>18.3 Results and Discussion 238</p> <p>18.3.1 Preliminary Peel Test 238</p> <p>18.3.2 Plasma Chlorination 238</p> <p>18.3.3 CO<sub>2</sub> and O<sub>2</sub> Plasma Treatment 246</p> <p>18.4 Conclusion 250</p> <p><b>19 PET Surface after Plasma or Laser Treatment: Study of the Chemical Modifications and Adhesive Properties 253<br /> </b><i>P. Laurens, S. Petit, P. Bertrand, F. Arćfi-Khonsari</i></p> <p>19.1 Introduction 253</p> <p>19.2 Experimental Details 254</p> <p>19.3 Results 257</p> <p>19.3.1 Untreated PET 257</p> <p>19.3.2 Plasma-treated PET 259</p> <p>19.3.3 Laser-treated PET 260</p> <p>19.4 Discussion 264</p> <p>19.4.1 Surface Oxidation 264</p> <p>19.4.2 Surface Degradation 265</p> <p>19.4.3 Al–PET Adhesion 267</p> <p>19.5 Conclusion 268</p> <p><b>20 Plasma Pretreatments and Treatments on Polytetrafluoroethylene for Reducing the Hydrophobic Recovery 271<br /> </b><i>P. Favia, A. Milella, L. Iacobelli, R. d’Agostino</i></p> <p>20.1 Introduction 271</p> <p>20.2 Experimental 273</p> <p>20.3 Results and Discussion 274</p> <p>20.4 Conclusions 279</p> <p><b>21 Oxygen-plasma Modification of Polyhedral Oligomeric Silsesquioxane (POSS) containing Copolymers for Micro- and Nanofabrication 281 <br /> </b><i>N. Vourdas, V. Bellas, E. Tegou, O. Brani, V. Constantoudis, P. Argitis, A. Tserepi and E. Gogolides, D. Eon, G. Cartry, C. Cardinaud</i></p> <p>21.1 Introduction and Experimental Conditions 281</p> <p>21.2 Results and Discussion 284</p> <p>21.2.1 Etching of POSS Copolymers in Oxygen Plasmas 284</p> <p>12.2 Surface Roughness of POSS Polymers after Plasma Treatment 287</p> <p>21.3 Conclusions 291</p> <p><b>Part III Plasma and Life Science 293</b></p> <p><b>22 Radicals of Plasma Needle Detected with Fluorescent Probe 295<br /> </b><i>Ingrid E. Kieft, Joep J.B.N. van Berkel, Erik R. Kieft, Eva Stoffels</i></p> <p>22.1 Introduction 295</p> <p>22.2 Experimental 297</p> <p>22.2.1 Plasma Needle 297</p> <p>22.2.2 Raman Scattering 298</p> <p>22.2.3 Fluorescent Probe 298</p> <p>22.2.4 Calibration with NO Radicals 299</p> <p>22.2.5 Plasma Treatment 301</p> <p>22.3 Results and Discussion 301</p> <p>22.3.1 Raman Scattering 301</p> <p>22.3.2 The Fluorescent Probe Measurements 302</p> <p>22.4 Conclusions 307</p> <p><b>23 RF-Plasma Treatment on the Inside of Small Functional Devices for Biomedical Application 309<br /> </b><i>C. Oehr, D. Hegemann, M. Müller, U. Vohrer, M. Storr</i></p> <p>23.1 Introduction 309</p> <p>23.2 Experimental 310</p> <p>23.3 Results and Discussion 311</p> <p>23.3.1 Devices with Geometrically Well-described Trenches Oriented Parallel to the Applied Field 311</p> <p>23.3.2 Devices with Geometrically Defined Trenches Oriented Nonparallel to the Applied Field 313</p> <p>23.3.3 Devices with Pores in Micrometer Dimension 314</p> <p>23.4 Conclusions 317</p> <p><b>24 Plasma Sterilisation: Mechanisms Overview and Influence of Discharge Parameters 319<br /> </b><i>Francois Rossi, Riccardo De Mitri, Sophie Bobin and Rosy Eloy</i></p> <p>24.1 Introduction 319</p> <p>24.2 Experimental 320</p> <p>24.3 Results 322</p> <p>24.4 Discussion 329</p> <p>24.5 Conclusions 330</p> <p><b>25 Improvement of Low-pressure Microwave Plasma-assisted Amino Functionalization of Polymers 333 <br /> </b><i>K. Schröder, B. Finke, A. Ohl</i></p> <p>25.1 Introduction 333</p> <p>25.2 Experimental 336</p> <p>25.2.1 Plasma Processing 336</p> <p>25.2.2 Surface Diagnostics 337</p> <p>25.3 Results and Discussion 338</p> <p>25.3.1 Amino Functionalization in the UHV Plasma System 338</p> <p>25.3.2 Amino Functionalization in the Low-Vacuum Plasma Reactor 343</p> <p>25.4 Summary 347</p> <p><b>26 PE-CVD Modification of Medical-grade PVC to Inhibit Bacterial Adhesion: PEO-like and Nanocomposite Ag/PEO-like Coatings 351 <br /> </b><i>D.J. Balazs, K. Triandafillu, E. Sardella, G. Iacoviello, P. Favia, R. d’Agostino, H. Harms, and H.J. Mathieu</i></p> <p>26.1 Introduction 351</p> <p>26.2 Materials and Methods 353</p> <p>26.2.1 Substrate Preparation 353</p> <p>2.2 Plasma-Deposition Processes 354</p> <p>26.2.3 Protein Adsorption 355</p> <p>26.2.4 XPS Analysis 355</p> <p>26.2.5 Contact-Angle Measurements 356</p> <p>26.2.6 Bacterial Adhesion 356</p> <p>26.3 Results and Discussion 357</p> <p>26.3.1 PEO-like Film Deposition 357</p> <p>26.3.2 Ag/PEO-like Films 360</p> <p>26.2.3 Evaluation of Protein Adsorption 365</p> <p>26.3.4 Evaluation of Bacterial Adhesion 367</p> <p>26.4 Conclusion 369</p> <p><b>27 Plasma-aided Micropatterning of Polystyrene Substrates for Driving Cell Adhesion and Spreading 373 <br /> </b><i>E. Sardella, R. Gristina, G.S. Senesi, R. d’Agostino, P. Favia</i></p> <p>27.1 Introduction 373</p> <p>27.2 Materials and Methods 375</p> <p>27.2.1 Surface Modifications 375</p> <p>27.2.2 Surface Diagnostic 375</p> <p>27.2.3 Cell Culture 376</p> <p>27.3 Results and Discussion 377</p> <p>27.3.1 PD-PEO-l Coatings 377</p> <p>27.3.3 Micropatterning of PEO-like Coatings 381</p> <p>27.4 Conclusions 385</p> <p><b>28 Plasma-deposited Acrylic Acid Coatings on Flat and Nanostructured Substrates for Cell-Culture Experiments 389<br /> </b><i>L. Detomaso, R. Gristina, G.S. Senesi, L.C. Lopez, P. Favia, R. d’Agostino</i></p> <p>28.1 Introduction 389</p> <p>28.2 Experimental 390</p> <p>28.2.1 Substrates 390</p> <p>28.2.2 Plasma Reactors and Processes 391</p> <p>28.2.3 Surface Characterization 391</p> <p>28.2.4 Cell-Culture Experiments 392</p> <p>28.3 Results and Discussion 392</p> <p>28.4 Conclusions 400</p> <p><b>29 The Model for Origin of Life Precursors Based on Exhaust Utilisation in the Electric Discharge 403<br /> </b><i>Marcela Morvová, Imrich Morva, František Hanic</i></p> <p>29.1 Introduction 403</p> <p>29.2 Experimental 404</p> <p>29.3 Conclusions 411</p> <p><b>Part IV Chemical Synthesis, Powders and Non-Equilibrium Effects 413</b></p> <p><b>30 Gliding-Discharge CF 2 Cl 2 and CHF 2 Cl Decomposition in Reducing Conditions 415<br /> </b><i>Teresa Opalińska, Anna Opalska, Krzysztof Schmidt-Szałowski</i></p> <p>30.1 Introduction 415</p> <p>30.2 Experimental 417</p> <p>30.2.1 Experimental Setup 417</p> <p>30.2.2 Chemical Analysis 418</p> <p>30.2.3 Conditions of Experiments 418</p> <p>30.2.4 Definition of the Process Parameters 419</p> <p>30.3 Results and Discussion 420</p> <p>30.3.1 Essential Parameters of the Process Characteristics 420</p> <p>30.3.2 Main Reaction Products – Hydrocarbons and Carbon Black 422</p> <p>30.3.3 Formation of Fluorine-containing Organic Compounds 424</p> <p>30.3.4 Energetic Efficiency of the Process 426</p> <p>30.4 Conclusions 426</p> <p><b>31 The Oxidation of Streams for Diesel Fuels Formulations by Means of High-voltage Oxygen Plasmas 431<br /> </b><i>Pedro Patiño, Eugenio Farrera, and Aurora Mejía</i></p> <p>31.1 Introduction 431</p> <p>31.2 Experimental 432</p> <p>31.2.1 Equipment 432</p> <p>31.3 Results 433</p> <p>31.3.1 Model Compounds 433</p> <p>31.3.2 Streams and Fuel Oil 437</p> <p>31.4 Discussion 437</p> <p>31.5 Conclusions 439</p> <p><b>32 Acetylene and Ethylene Carbon Blacks Production in Plasma Process 443</b><br /> <i>Tomasz Zieliński, Teresa Opalińska, Jacek Kijeński</i></p> <p>32.1 Introduction 443</p> <p>32.2 Experimental 444</p> <p>32.2.1 Apparatus 444</p> <p>32.2.2 Procedure 445</p> <p>32.3 Results and Discussion 446</p> <p>32.4 Conclusions 453</p> <p><b>33 DCM Production in a Dusty-Plasma Trap 455<br /> </b><i>A. Ivanov, V. Mitin, A. Pal, A. Ryabinkin, A. Serov, E. Skryleva, A Starostin, V. Fortov, Yu. Shulga</i></p> <p>33.1 Introduction 455</p> <p>33.2 The Setup for DCM Production 456</p> <p>33.3 Results and Discussion 458</p> <p>33.3.1 Measurement of the Mean Nickel Content 459</p> <p>33.3.2 Measurement of the Specific Surface 460</p> <p>33.3.3 X-ray Diffraction Investigations 460</p> <p>33.3.4 Magnetic Properties of the Processed Powder 461</p> <p>33.3.5 X-ray Photoelectron Spectroscopy 462</p> <p>33.4 Conclusion 463</p> <p><b>34 Dust Particles in the dc Glow-Discharge Plasma: Self-organization and Peculiarities of Behavior 465<br /> </b><i>V.E. Fortov, A.G. Khrapak, V.I. Molotkov, O.F. Petrov, M.Y. Poustylnik, V.M. Torchinsky</i></p> <p>34.1 Introduction 465</p> <p>34.2 Experimental Setup 466</p> <p>34.3 Plasma Crystals and Liquids 468</p> <p>34.3.1 Structures of Spherical Grains 468</p> <p>34.3.2 Plasma Liquid Crystal 469</p> <p>34.4 Wave Phenomena 470</p> <p>34.5 Diagnostics of the dc Glow-Discharge Plasma 472</p> <p>34.5.1 Measurement of the Grain Charge 472</p> <p>34.5.2 Application of Thermophoresis for Diagnostics of Dust-Particle Confinement 473</p> <p>34.6 Conclusion 475</p> <p><b>35 Controlled Growth of Carbon Nanotubes Using Pulsed Glow-Barrier Discharge 477<br /> </b><i>Tomohiro Nozaki, Yoshihito Kimura, Ken Okazaki, Shigeru Kado</i></p> <p>35.1 Introduction 477</p> <p>35.2 Experimental 478</p> <p>35.3 General Aspects of Carbon-Nanotube Deposition with He-based APG 479</p> <p>35.4 Aligned Nanotube Growth with Pulsed APG 481</p> <p>35.4.1 Effect of Pulsed Voltage on Alignment 483</p> <p>35.4.2 Growth Temperature and Pulse Duty 484</p> <p>35.5 Concluding Remarks and Future Work 485</p> <p><b>36 Investigation of Excited Species in a Carbon Ablation Plume in Nitrogen Gas Environment 489<br /> </b><i>M.A. Bratescu, Y. Sakai, N. Sakura, D. Yamaoka, Y. Suda and H. Sugawara</i></p> <p>36.1 Introduction 489</p> <p>36.2 Experimental Setup 490</p> <p>36.3 Results and Discussion 492</p> <p>36.4 Conclusions 497</p> <p><b>37 Optimization of a DC-RF Hybrid Plasma Flow System Using Statistical Analysis 499<br /> </b><i>Kohtaro Kawajiri, Kandasamy Ramachandran and Hideya Nishiyama</i></p> <p>37.1 Introduction 499</p> <p>37.2 Experimental Apparatus and Procedures 500</p> <p>37.3 Results and Discussion 503</p> <p>37.3.1 Particle Residence Time 503</p> <p>37.3.2 Appearance and Disappearance Voltages 505</p> <p>37.3.3 Upper Limit of Injected Nitrogen Flow Rate 509</p> <p>37.3.4 Downstream-Gas Temperature 514</p> <p>37.3.5 Optimization 516</p> <p>37.4 Conclusion 517</p>
The editors are leading scientists worldwide, well known from their publications, their work as editors as well as from conference organizations<br> * Dr. Riccardo d'Agostino, Professor, Director of the Department of Chemistry, University of Bari, Italy<br> * Dr. Michael R. Wertheimer, Professor, NSERC Industrial Research Chair on Low Pressure Plasma Processing of Materials, Ecole Polytechnique, Montreal Canada<br> * Dr. Christian Oehr, Head of Dept. Interfacial Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany<br> * Dr. Pietro Favia, Associate Professor, Department of Chemistry, University of Bari
This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in the plasma community as well as in the area of its industrial applications.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Acoustics
Fundamentals of Acoustics
von: Michel Bruneau, Thomas Socit Franaise d'Acoustique
PDF ebook
266,99 €
Crystal Growth Technology
Crystal Growth Technology
von: Hans J. Scheel, Tsuguo Fukuda
PDF ebook
163,99 €
Frequency Standards
Frequency Standards
von: Fritz Riehle
PDF ebook
147,99 €