Details

Plasma-Aided Nanofabrication


Plasma-Aided Nanofabrication

From Plasma Sources to Nanoassembly
1. Aufl.

von: Ken Ostrikov, Shuyan Xu

138,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.09.2007
ISBN/EAN: 9783527611560
Sprache: englisch
Anzahl Seiten: 315

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

In this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications.
1 Introduction<br> 2 What Makes Low-Temperature Plasmas a Versatile Nanotool?<br> 3 Specific Examples and Practical Framework<br> 4 Generation of Building andWorking Units<br> 5 Transport, Manipulation, and Deposition of Building and Working Units<br> 6 Surface Science of Plasma-Exposed Surfaces and Self-Organization Processes<br> 7 Ion-Focusing Nanoscale Objects<br> 8 Building and Working Units at Work: Applications in Nanoscale Materials Synthesis and Processing<br> 9 Conclusions and Outlook<br> 10 Appendix A. Reactions and Rate Coefficients in Low-Temperature PECVD of Carbon Nanostructures<br> 11 Appendix B. Why plasma-based nanoassembly: many more reasons
"The authors have managed to write a very informative and inspiring book about a fascinating topic of advanced plasma science and materials processing." (<i>Macromol. Chem. Phys</i>., 2008, 209)
Dr. Ken Ostrikov, now at the University of Sydney, has been with numerous R&D institutions worldwide. His research topics include chemically active plasmas for nanofabrication, synthesis of functional materials and bio-compatible coatings, development of industrial process specifications and integrated plasma facilities for materials synthesis and surface modification, as well as several fundamental topics. Dr. Ostrikov's work was honored several times and published in more than 200 papers in international journals and conference proceedings. <br> <br> Shuyan Xu, Nanyang Technological University, is the founding Leader of his research center. Professor Xu's research interests include development of plasma sources for surface processing and modification, materials deposition and low-energy ion implantation, plasma- aided bioceramic coatings, plasma assembly of nanostructures, as well as modelling and simulation of chemically active plasma-grown nanoparticles and nanocluster dynamics and self-organization processes. Professor Xu has published more than 180 papers.
This monograph covers most essential things an advanced researcher needs to know attempting to fabricate exotic nanostructures and intricate nano-arrays in low-temperature plasma environments. In an easy-to-follow and systematic way, the book reveals the state-of-the art "know-hows" gained from authors work in this area: how to generate and control the plasma, how to develop suitable plasma nanofabrication facilities, how to tailor the plasma-based process to synthesize specific nanostructures and several others. Various examples of successful applications of plasma-aided nanofabrication include synthesis and post-processing of carbon nanotubes and other high-aspect-ratio nanostructures, microporous films, low-dimensional quantum confinement structures, bioceramic coatings, and other nanocrystalline and nanostructured materials with a broad range of applications ranging from protective and functional coatings to biogenetic and nanoelectronic devices. The level of complexity in this book varies from the common knowledge to the expert level to make it suitable not only to researchers, engineers, and graduate students specializing in relevant areas but also to high school teachers, students and general public interested in nanotechnology. <br> <br> From the Contents:<br> - Generation of highly-uniform, high-density inductively coupled plasma <br> - Plasma sources: meeting the demands of nanotechnology <br> - Carbon-based nanostructures<br> - Quantum confinement structures <br> - Hydroxyapatite bioceramics<br> - Other examples of plasma-aided nanofabrication<br> - Further examples, conclusions and outlook <br> <br> Kostya (Ken) Ostrikov is a leader of the Plasma Nanoscience@Complex Systems team at the University of Sydney, Australia. After receiving his Doctor of Science (Habilitation) degree and professorial appointment in 1996, he has been awarded 6 prestigious fellowships to work with leading research universities in the UK, Germany, Japan, Singapore, and Australia. His research interests are in the areas of applied and industrial physics, and research topics include low-temperature plasmas for nanofabrication, synthesis of functional materials and bio-compatible coatings, development of industrial process specifications and integrated plasma facilities for materials synthesis and surface modification, as well as several fundamental topics including atomic assemblies and growth kinetics of various nanostructures with different dimensionality, as well as complex (dusty) plasmas, surface phenomena in surface science, materials science, and nanoplasmonics, and nanoparticle-related phenomena in space physics and astrophysics. <br> <br> Shuyan Xu is the founding leader of the Plasma Sources and Applications Research Center of NIE/NTU, Singapore. His research interests include the development of novel RF power deposition schemes, deposition and understanding of growth kinetics of nano-structured functional films, biocompatible coatings, plasma-aided nanofabrication of large-area nanopatterns of quantum dots and carbon microemitter structures for micro-/optoelectronic and biomedical applications. <br> <br> <br> <br>

Diese Produkte könnten Sie auch interessieren:

Panoramic Imaging
Panoramic Imaging
von: Fay Huang, Reinhard Klette, Karsten Scheibe
PDF ebook
112,99 €
Scattering of Electromagnetic Waves
Scattering of Electromagnetic Waves
von: Leung Tsang, Jin Au Kong
PDF ebook
155,99 €
Vacuum Microelectronics
Vacuum Microelectronics
von: Wei Zhu
PDF ebook
144,99 €