Details

Plant Nucleotide Metabolism


Plant Nucleotide Metabolism

Biosynthesis, Degradation, and Alkaloid Formation
1. Aufl.

von: Hiroshi Ashihara, Alan Crozier, Iziar A. Ludwig

152,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.01.2020
ISBN/EAN: 9781119476108
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource.   The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested. Plant Nucleotide Metabolism offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research. 
Preface xv Part I General Aspects of Nucleotide Metabolism 1 1 Structures of Nucleotide-Related Compounds 3 1.1 Introduction 3 1.2 Nomenclature and Abbreviations of Nucleotide-Related Compounds 3 1.3 Chemical Structures of Nucleotide-Related Compounds 5 1.3.1 Purines 5 1.3.1.1 Purine Bases 5 1.3.1.2 Purine Nucleosides 6 1.3.1.3 Purine Nucleotides 7 1.3.2 Pyrimidines 8 1.3.2.1 Pyrimidine Bases 9 1.3.2.2 Pyrimidine Nucleosides 9 1.3.2.3 Pyrimidine Nucleotides 10 1.3.3 Pyridines 11 1.4 Summary 11 References 11 2 Occurrence of Nucleotides and Related Metabolites in Plants 13 2.1 Purines and Pyrimidines 13 2.1.1 Concentration of Purine and Pyrimidine Nucleotides 14 2.1.2 Concentration of Purine and Pyrimidine Bases and Nucleosides 16 2.2 Pyridine Nucleotides 17 2.2.1 Concentration of Pyridine Nucleotides 17 2.2.2 Concentration of Nicotinate and Nicotinamide 18 2.3 Concentration of Cytokinins 18 2.4 Alkaloids Derived from Nucleotides 18 2.5 Summary 19 References 19 3 General Aspects of Nucleotide Biosynthesis and Interconversions 21 3.1 Introduction 21 3.2 De Novo Biosynthesis of Ribonucleoside Monophosphates 21 3.3 Interconversion of Nucleoside Monophosphates, Nucleoside Diphosphates, and Triphosphates 23 3.3.1 Nucleoside-Monophosphate Kinase 23 3.3.2 Specific Nucleoside-Monophosphate Kinases 24 3.4 Conversion of Nucleoside Diphosphates to Nucleoside Triphosphates 24 3.4.1 ATP Synthesis by Electron Transfer Systems 25 3.4.2 Substrate-Level ATP Synthesis 26 3.4.3 Nucleoside-Diphosphate Kinase 26 3.5 Biosynthesis of Deoxyribonucleotides 29 3.6 Nucleic Acid Biosynthesis 29 3.7 Supply of 5-Phosphoribosyl-1-Pyrophosphate 30 3.8 Supply of Amino Acids for Nucleotide Biosynthesis 33 3.9 Nitrogen Metabolism and Amino Acid Biosynthesis in Plants 33 3.10 Summary 34 References 35 Part II Purine Nucleotide Metabolism 39 4 Purine Nucleotide Biosynthesis De Novo 41 4.1 Introduction 41 4.2 Reactions and Enzymes 43 4.2.1 Synthesis of Phosphoribosylamine 44 4.2.2 Synthesis of Glycineamide Ribonucleotide 46 4.2.3 Synthesis of Formylglycineamide Ribonucleotide 46 4.2.4 Synthesis of Formylglycinamidine Ribonucleotide 47 4.2.5 Synthesis of Aminoimidazole Ribonucleotide 47 4.2.6 Synthesis of Aminoimidazole Carboxylate Ribonucleotide 48 4.2.7 Synthesis of Aminoimidazole Succinocarboxamide Ribonucleotide 48 4.2.8 Synthesis of Aminoimidazole Carboxamide Ribonucleotide 49 4.2.9 Synthesis of IMP via Formamidoimidazole Carboxamide Ribonucleotide 49 4.2.10 Synthesis of AMP 50 4.2.11 Synthesis of GMP 51 4.3 Summary 52 References 52 5 Salvage Pathways of Purine Nucleotide Biosynthesis 55 5.1 Introduction 55 5.2 Characteristics of Purine Salvage in Plants 56 5.3 Properties of Purine Phosphoribosyltransferases 59 5.3.1 Adenine Phosphoribosyltransferase 59 5.3.2 Hypoxanthine/Guanine Phosphoribosyltransferase 59 5.3.3 Xanthine Phosphoribosyltransferase 62 5.4 Properties of Nucleoside Kinases 62 5.4.1 Adenosine Kinase 62 5.4.2 Inosine/Guanosine Kinase 64 5.4.3 Deoxyribonucleoside Kinases 64 5.5 Properties of Nucleoside Phosphotransferase 65 5.6 Role of Purine Salvage in Plants 66 5.7 Summary 66 References 66 6 Interconversion of Purine Nucleotides 71 6.1 Introduction 71 6.2 Deamination Reactions 71 6.2.1 Routes of Deamination of Adenine Ring 73 6.2.2 AMP Deaminase 73 6.2.3 Routes of Deamination of Guanine Ring 74 6.2.4 Guanosine Deaminase 75 6.3 Dephosphorylation Reactions 75 6.4 Glycosidic Bond Cleavage Reactions 76 6.4.1 Adenosine Nucleosidase 76 6.4.2 Inosine/Guanosine Nucleosidase 78 6.4.3 Non-specific Purine Nucleosidases 78 6.4.4 Recombinant Non-Specific Nucleosidases 78 6.5 In Situ Metabolism of 14C-Labelled Purine Nucleotides 79 6.5.1 Metabolism of Adenine Nucleotides 79 6.5.2 Metabolism of Guanine Nucleotides 80 6.6 In Situ Metabolism of Purine Nucleosides and Bases 80 6.6.1 Metabolism of Adenine and Adenosine 82 6.6.2 Metabolism of Guanine and Guanosine 83 6.6.3 Metabolism of Hypoxanthine and Inosine 84 6.6.4 Metabolism of Xanthine and Xanthosine 84 6.6.5 Metabolism of Deoxyadenosine and Deoxyguanosine 85 6.7 Summary 88 References 89 7 Degradation of Purine Nucleotides 95 7.1 Introduction 95 7.2 (S)-Allantoin Biosynthesis from Xanthine 97 7.2.1 Xanthine Dehydrogenase 99 7.2.2 Urate Oxidase 100 7.2.3 Allantoin Synthase 101 7.3 Catabolism of (S)-Allantoin 101 7.3.1 Allantoinase 103 7.3.2 Allantoate Amidohydrolase 104 7.3.3 (S)-Ureidoglycine Aminohydrolase 104 7.3.4 Allantoate Amidinohydrolase 105 7.3.5 Ureidoglycolate Amidohydrolase 105 7.3.6 (S)-Ureidoglycolate-urea Lyase 105 7.3.7 Urease 105 7.4 Purine Nucleotide Catabolism in Plants 106 7.5 Accumulation and Utilization of Ureides in Plants 107 7.5.1 Ureides in Plant Tissues and Xylem Sap 107 7.5.2 Role of Ureides in Nitrogen Storage and Transport 109 7.5.3 Role of Ureides in Germination and Development of Seeds 109 7.5.4 Ureide Formation in Nodules of Tropical Legumes 110 7.5.5 Other Role of Ureides in Plants 110 7.6 Summary 111 References 111 Part III Pyrimidine Nucleotide Metabolism 117 8 Pyrimidine Nucleotide Biosynthesis De Novo 119 8.1 Introduction 119 8.2 Reactions and Enzymes of the De Novo Biosynthesis 121 8.2.1 Synthesis of Carbamoyl-phosphate 121 8.2.2 Formation of Carbamoyl-aspartate 123 8.2.3 Formation of Dihydroorotase from Carbamoyl-aspartate 123 8.2.4 Formation of Orotate from Dihydroorotate 124 8.2.5 Synthesis of UMP from Orotate 125 8.2.6 Synthesis of CTP from UTP 126 8.3 Control Mechanism of De Novo Pyrimidine Ribonucleotide Biosynthesis 127 8.3.1 Fine Control of the De Novo Pathway 127 8.3.2 Coarse Control of the De Novo Pathway 129 8.4 Biosynthesis of Thymidine Nucleotide 129 8.4.1 Formation of dUMP 129 8.4.2 Conversion of UMP to dUMP via dUTP 130 8.4.3 Conversion of dUMP to dTMP 130 8.4.4 Thymidine Monophosphate Kinase 131 8.5 Summary 131 References 131 9 Salvage Pathways of Pyrimidine Nucleotide Biosynthesis 137 9.1 Introduction 137 9.2 Characteristics of Pyrimidine Salvage in Plants 137 9.3 Enzymes of Pyrimidine Salvage 139 9.3.1 Uracil Phosphoribosyl Transferase 140 9.3.2 Uridine/Cytidine Kinase 142 9.3.3 Thymidine Kinase 143 9.3.4 Deoxyribonucleoside Kinase 144 9.3.5 Nucleoside Phosphotransferase 144 9.4 Role of Pyrimidine Salvage in Plants 145 9.5 Summary 146 References 146 10 Interconversion of Pyrimidine Nucleotides 149 10.1 Introduction 149 10.2 Deaminase Reactions 149 10.2.1 Cytidine Deaminase 149 10.2.2 Cytosine Deaminase 152 10.2.3 Deoxycytidylate Deaminase 152 10.3 Nucleosidase and Phosphorylase Reactions 152 10.3.1 Uridine Nucleosidase 152 10.3.2 Thymidine Phosphorylase 153 10.4 In Situ Metabolism of 14C-Labelled Pyrimidines 153 10.4.1 Metabolic Fate of Orotate 154 10.4.2 Metabolic Fate of Uridine and Uracil 154 10.4.3 Metabolic Fate of Cytidine and Cytosine 156 10.4.4 Metabolic Fate of Deoxycytidine 157 10.4.5 Metabolic Fate of Thymidine 158 10.5 Summary 159 References 160 11 Degradation of Pyrimidine Nucleotides 165 11.1 Introduction 165 11.2 Enzymes Involved in the Degradation Routes of Pyrimidines 166 11.2.1 Dihydropyrimidine Dehydrogenase 167 11.2.2 Dihydropyrimidinase 167 11.2.3 ??-Ureidopropionase 168 11.3 The Metabolic Fate of Uracil and Thymine 168 11.4 Summary 169 References 170 Part IV Physiological Aspects of Nucleotide Metabolism 173 12 Growth and Development 175 12.1 Introduction 175 12.2 Embryo Maturation 175 12.3 Germination 180 12.3.1 Purine Metabolism in Germination 180 12.3.2 Pyrimidine Metabolism in Germination 183 12.4 Organogenesis 185 12.5 Breaking Bud Dormancy 186 12.6 Fruit Ripening 186 12.7 Storage Organ Development and Sprouting 186 12.8 Suspension-Cultured Cells 187 12.8.1 Nucleotide Pools 187 12.8.2 Nucleotide Biosynthesis 188 12.8.3 Nucleotide Availability 188 12.9 Molecular Studies 189 12.10 Summary 189 References 189 13 Environmental Factors and Nucleotide Metabolism 195 13.1 Introduction 195 13.2 Effect of Phosphate on Nucleotide Metabolism 195 13.3 Effect of Salts on Nucleotide Metabolism 199 13.4 Effect of Water Stress 202 13.5 Effect of Wound Stress 202 13.6 Effect of Iron Deficiency 205 13.7 Effect of Light 206 13.8 Summary 206 References 206 Part V Purine Alkaloids 211 14 Occurrence of Purine Alkaloids 213 14.1 Introduction 213 14.2 Chemical Structure of Purine Alkaloids 213 14.3 Occurrence of Purine Alkaloids in Plants 215 14.3.1 Purine Alkaloids in Tea and Related Species 215 14.3.2 Purine Alkaloids in Coffee and Related Species 218 14.3.3 Purine Alkaloids in Maté 220 14.3.4 Purine Alkaloids in Cacao and Related Species 221 14.3.5 Purine Alkaloids in Cola Species 223 14.3.6 Purine Alkaloids in Guaraná and Related Species 223 14.3.7 Purine Alkaloids in Citrus Species 224 14.3.8 Purine Alkaloids in Other Plants 225 14.4 Summary 226 References 226 15 Biosynthesis of Purine Alkaloids 231 15.1 Introduction 231 15.2 A Brief History of Caffeine Biosynthesis Research 231 15.3 Caffeine Biosynthesis Pathway 234 15.3.1 N-Methyltransferase Nomenclature 236 15.3.2 Formation of 7-Methylxanthine from Xanthosine 236 15.3.3 7-Methylxanthosine Synthase 237 15.3.4 N-Methylnucleosidase 240 15.3.5 Formation of Caffeine from 7-Methylxanthine 241 15.3.6 Caffeine Synthase 241 15.3.7 Theobromine Synthase 244 15.4 Genes and Proteins of Caffeine Synthase Family 245 15.5 Xanthosine Biosynthesis from Purine Nucleotides 249 15.5.1 De Novo Purine Route 249 15.5.2 Adenosine Monophosphate Route 251 15.5.3 S-Adenosyl-L-methionine Cycle Route 251 15.5.4 Nicotinamide Adenine Diphosphate Catabolism Route 252 15.5.5 Guanosine Monophosphate Route 253 15.6 Summary 253 References 253 16 Physiological and Ecological Aspects of Purine Alkaloid Biosynthesis 259 16.1 Introduction 259 16.2 Physiology of Caffeine Biosynthesis 259 16.2.1 Purine Alkaloid Biosynthesis in Different Species 261 16.2.2 Camellia 261 16.2.3 Coffea 264 16.2.4 Theobroma 264 16.2.5 Maté 266 16.2.6 Guaraná 267 16.2.7 Citrus 268 16.3 Subcellular Localization of Caffeine Biosynthesis 268 16.3.1 Caffeine Synthase 268 16.3.2 The De Novo Route Enzymes 269 16.3.3 The AMP Route Enzymes 270 16.3.4 The SAM Route Enzymes 270 16.3.5 Subcellular Localization and Transport of Intermediates 270 16.4 Regulation of Caffeine Biosynthesis 270 16.5 Ecological Roles of Caffeine 271 16.5.1 Allelopathic Function Theory 271 16.5.2 Effect of Caffeine on Plant Growth 272 16.5.3 Allelopathy in Natural Ecosystems 273 16.5.4 Chemical DefenceTheory 274 16.6 Summary 274 References 275 17 Metabolism of Purine Alkaloids and Biotechnology 281 17.1 Introduction 281 17.2 Metabolism of Purine Alkaloids 281 17.2.1 Methylurate Biosynthesis 281 17.2.2 The Major Pathway of Caffeine Degradation 282 17.2.3 Purine Catabolic Pathways in Alkaloid Plants 284 17.3 Diversity of Purine Alkaloid Metabolism in Plants 285 17.3.1 Coffea Species 285 17.3.2 Camellia Species 286 17.3.3 Maté Species 290 17.3.4 Cacao Species 290 17.3.5 Other Plant Species 290 17.3.6 Bacteria 291 17.4 Biotechnology of Purine Alkaloids 293 17.4.1 Decaffeinated Coffee Plants 293 17.4.2 Decaffeinated Tea Plants 294 17.5 Caffeine-Producing Transgenic Plants 295 17.5.1 Antiherbivore Activity 295 17.5.2 Antipathogen Activity 296 17.6 Summary 298 References 298 Part VI Pyridine Nucleotide Metabolism 301 18 Pyridine (Nicotinamide Adenine) Nucleotide Biosynthesis De Novo 303 18.1 Introduction 303 18.2 Two Distinct Pathways of De Novo Nicotinate Mononucleotide Biosynthesis 303 18.3 The Outline of the De Novo Pathway of NAD Biosynthesis in Plants 304 18.4 Enzymes Involved in De Novo NAD Synthesis in Plants 307 18.4.1 l-Aspartate Oxidase and Quinolinate Synthase 308 18.4.2 Quinolinate Phosphoribosyltransferase 309 18.4.3 Nicotinate Mononucleotide Adenylyltransferase 309 18.4.4 NAD Synthetase 310 18.4.5 NAD Kinase 310 18.5 Summary 310 References 310 19 Pyridine Nucleotide Cycle 315 19.1 Introduction 315 19.2 Pyridine Nucleotide Cycle 315 19.2.1 Major Pyridine Nucleotide Cycles in Plants 317 19.2.2 Alternative Pyridine Nucleotide Cycles in Plants 318 19.2.3 Rate-Limiting Step of the Pyridine Cycle 319 19.3 Catabolism of NAD 320 19.3.1 Reactions from NAD to Nicotinate 320 19.3.2 Degradation of Pyrimidine Ring 320 19.3.3 Nicotinate Conversion to Nicotinate-N-Glucoside and N-Methylnicotinate 321 19.4 Enzymes Involved in NAD Catabolism 321 19.4.1 Direct NAD Cleavage Enzymes 321 19.4.2 NAD Pyrophosphatase 321 19.4.3 5?-Nucleotidase and Nicotinamide Riboside Nucleosidase 322 19.4.4 Nicotinamidase and Nicotinamide Riboside Deaminase 322 19.5 Salvage of Nicotinamide and Nicotinate 323 19.5.1 Nicotinate Phosphoribosyltransferase 323 19.5.2 Nicotinate Riboside Kinase 324 19.6 Summary 325 References 325 Part VII Pyridine Alkaloids 329 20 Occurrence and Biosynthesis of Pyridine Alkaloids 331 20.1 Introduction 331 20.2 Occurrence of Pyridine Alkaloids 333 20.2.1 Trigonelline in Plants 333 20.2.2 Other Pyridine Alkaloids in Plants 334 20.3 Biosynthesis of Pyridine Alkaloids 335 20.3.1 Trigonelline Biosynthesis 335 20.3.2 Nicotinate N-Glucoside Biosynthesis 336 20.3.3 The Diversity of Biosynthetic Reactions 337 20.3.3.1 Ferns 338 20.3.3.2 Gymnosperms 338 20.3.3.3 Angiosperms 339 20.3.3.4 Nicotinate Conjugate Formation 340 20.3.4 Biosynthesis of Ricinine 341 20.3.5 Biosynthesis of Nicotine (Pyridine Ring) 343 20.4 Summary 345 References 345 21 Physiological Aspect and Biotechnology of Trigonelline 351 21.1 Introduction 351 21.2 Physiological Aspect of Trigonelline Biosynthesis 351 21.2.1 Coffee 351 21.2.2 Leguminous Plants 354 21.3 Physiological Aspect of Nicotinate N-Glucoside Biosynthesis 356 21.4 The Role of Trigonelline in Plants 356 21.4.1 Role of Trigonelline as a Nutrient Source 357 21.4.2 Role of Trigonelline as a Compatible Solute 357 21.4.3 Trigonelline and Nyctinasty 358 21.4.4 Cell Cycle Regulation 358 21.4.5 Detoxification of Nicotinate 359 21.4.6 Signal Transduction 360 21.4.7 Role of Host Selection by Herbivores 360 21.5 Biotechnology of Trigonelline 360 21.6 Summary 362 References 363 Part VIII Other Nucleotide-Related Metabolites 367 22 Sugar Nucleotides 369 22.1 Introduction 369 22.2 The Sugar Nucleotide Moiety 370 22.3 Enzymes of Sugar Nucleotide Biosynthesis 371 22.3.1 UDP-Glucose Pyrophosphorylase 371 22.3.2 UDP-Sugar Pyrophosphorylase 374 22.3.3 Sucrose Synthase 376 22.4 Localization of UDP-Glucose-Producing Enzymes 377 22.5 UDP-Glucose-Interconversion 377 22.6 Other Metabolites 379 22.6.1 Cyclic Nucleotides 379 22.6.2 Diadenosine Tetraphosphate 381 22.6.3 Purine Alkaloid Glucosides 382 22.7 Summary 382 References 382 23 Cytokinins 387 23.1 Introduction 387 23.2 Adenosine Phosphate-Isopentenyl Formation 388 23.3 trans-Zeatin Phosphate Synthesis 389 23.4 Formation of Cytokinin Bases 389 23.5 Effect of Nucleotide Enzymes in Cytokinins 390 23.5.1 Cytokinin Inactivation by Adenine Phosphoribosyltransferase 390 23.5.2 Homeostasis of Cytokinin by Adenosine Kinase 392 23.5.3 Endodormancy of Potato and Purine Nucleoside Phosphorylase 392 23.6 New Purine-Related Plant Growth Regulators 392 23.7 Summary 393 References 394 Part IX Dietary Plant Alkaloids, Their Bioavailability, and Potential Impact on Human Health 397 24 Bioavailability and Potential Impact on Human Health of Caffeine, Theobromine, and Trigonelline 399 24.1 Caffeine 399 24.1.1 Dietary Caffeine 399 24.1.2 Bioavailability and Bioactivity of Caffeine 400 24.2 Theobromine 404 24.2.1 Interactions with Flavan-3-ols 404 24.2.2 Toxicity ofTheobromine 406 24.3 Trigonelline 406 24.3.1 Dietary Trigonelline 406 24.3.2 Bioavailability and Bioactivity of Trigonelline 407 24.4 Summary 409 References 409 Index 415
Professor Hiroshi Ashihara is an Emeritus Professor at the Ochanomizu University, Tokyo, Japan. Dr Iziar A. Ludwig is a Postdoctoral Research Associate at the School of Medicine and Life Sciences, University Rovira I Virgili, Reus, Spain. Professor Alan Crozier is an Honorary Senior Research Fellow at the Department of Nutrition, University of California, Davis, CA, USA and the School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK.
All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource. The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested. Plant Nucleotide Metabolism offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research.

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
147,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
220,99 €