Details

Physics of Atomic Nuclei


Physics of Atomic Nuclei


1. Aufl.

von: Vladimir Zelevinsky, Alexander Volya

111,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 31.01.2017
ISBN/EAN: 9783527693603
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. <br> The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.
<p>Dedication xiii</p> <p>Preface xv</p> <p><b>1 Building Blocks and Interactions 1</b></p> <p>1.1 What Are the Nuclei Made Of? 1</p> <p>1.2 Proton and Neutron 3</p> <p>1.3 Strong Interactions 4</p> <p>1.4 Electromagnetic Interactions and Charge Distribution 5</p> <p>1.5 Magnetic Properties 10</p> <p>1.6 Weak Interactions 11</p> <p>1.7 Neutron Decay 13</p> <p>1.8 NuclearWorld 15</p> <p>References 19</p> <p><b>2 Isospin 21</b></p> <p>2.1 Quantum Numbers in the Two-Body Problem 21</p> <p>2.2 Introducing Isospin 23</p> <p>2.3 Isospin Invariance 25</p> <p>2.4 Space–Spin Symmetry and Isospin Invariance 26</p> <p>2.5 Glimpse of a More General Picture 30</p> <p>2.6 Relations between Cross Sections 31</p> <p>2.7 Selection Rules 35</p> <p>2.8 Isobaric Mass Formulae 38</p> <p>References 41</p> <p><b>3 Two-Body Dynamics and the Deuteron 43</b></p> <p>3.1 Low-Energy Nuclear Forces 43</p> <p>3.2 Example: Argonne Potential 45</p> <p>3.3 Meson Exchange 48</p> <p>3.4 Deuteron: Central Forces and s-Wave 51</p> <p>3.5 Tensor Forces and d-Wave 55</p> <p>3.6 Magnetic Dipole Moment 58</p> <p>3.7 Electric Quadrupole Moment 59</p> <p>References 65</p> <p><b>4 Two-Body Scattering 67</b></p> <p>4.1 Scattering Problem 67</p> <p>4.2 Phase Shifts 69</p> <p>4.3 Scattering Length 71</p> <p>4.4 Sign of the Scattering Length 78</p> <p>4.5 Resonance Scattering at Low Energies 80</p> <p>4.6 Effective Radius 82</p> <p>4.7 Scattering of Identical Particles 83</p> <p>4.8 Coulomb Scattering 86</p> <p>4.9 Coulomb-Nuclear Interference 87</p> <p>References 89</p> <p><b>5 Liquid Drop Model 91</b></p> <p>5.1 Binding Energies 91</p> <p>5.2 Shape Variables 95</p> <p>5.3 Microscopic Variables 97</p> <p>5.4 Multipole Moments 98</p> <p>5.5 Kinetic Energy and Inertial Parameters 100</p> <p>5.6 Shape Vibrations 102</p> <p>5.7 Stability of the Charged Spherical Liquid Drop 104</p> <p>References 111</p> <p><b>6 Vibrations of a Spherical Nucleus 113</b></p> <p>6.1 SoundWaves 113</p> <p>6.2 Isovector Modes 117</p> <p>6.3 Giant Resonance and Linear Response 119</p> <p>6.4 Classification of Normal Modes 121</p> <p>6.5 Quantization of Nuclear VibrationalModes 125</p> <p>6.6 Multiphonon Excitations 128</p> <p>6.7 Angular Momentum Classification 132</p> <p>References 134</p> <p><b>7 Fermi Gas Model 135</b></p> <p>7.1 Mean Field and Quasiparticles 135</p> <p>7.2 Perfect Fermi Gas 137</p> <p>7.3 Ground State 138</p> <p>7.4 Correlation Between Particles 142</p> <p>7.5 Asymmetric Systems and Chemical Equilibrium 143</p> <p>7.6 Pressure and Speed of Sound 146</p> <p>7.7 Gravitational Equilibrium 148</p> <p>7.8 Nuclear Matter Equation of State 150</p> <p>References 151</p> <p><b>8 Spherical Mean Field 153</b></p> <p>8.1 Introduction 153</p> <p>8.2 Magic Numbers 153</p> <p>8.3 Separation Energy 155</p> <p>8.4 Periodicity of Nuclear Spectra 156</p> <p>8.5 Harmonic Oscillator Potential 157</p> <p>8.6 Orbital Momentum Representation 160</p> <p>8.7 SquareWell Potential 162</p> <p>8.8 Spin–Orbit Coupling 163</p> <p>8.9 Realistic Level Scheme 165</p> <p>8.10 Semiclassical Origins of Shell Structure 166</p> <p>References 168</p> <p><b>9 Independent Particle Shell Model 169</b></p> <p>9.1 Shell Model Configurations 169</p> <p>9.2 Particle–Hole Symmetry 171</p> <p>9.3 MagneticMoment 172</p> <p>9.4 Quadrupole Moment 174</p> <p>9.5 Recoil Corrections 177</p> <p>9.6 Introduction to Group Theory of Multiparticle Configurations 178</p> <p>References 183</p> <p><b>10 Light Nuclei 185</b></p> <p>10.1 A ShortWalk along the Beginning of the Nuclear Chart 185</p> <p>10.2 Halo in Quantum Systems 190</p> <p>10.3 Nuclear Halos 192</p> <p>10.4 One-Body Halo 193</p> <p>10.5 Two-Body Halos 195</p> <p>10.6 Efimov States 199</p> <p>References 202</p> <p><b>11 Many-Body Operator Formalism 203</b></p> <p>11.1 Secondary Quantization 203</p> <p>11.2 Physical Observables: One-Body Operators 208</p> <p>11.3 Two-Body Operators 209</p> <p>11.4 Interparticle Interaction 210</p> <p>11.5 Interaction in a Spherical Basis 213</p> <p>11.6 Recoupling of Angular Momentum 215</p> <p>References 222</p> <p><b>12 Nuclear Deformation 223</b></p> <p>12.1 Idea of Nuclear Deformation 223</p> <p>12.2 Collective Model 224</p> <p>12.3 Adiabatic Approximation 226</p> <p>12.4 Onset of Deformation 228</p> <p>12.5 Quadrupole Deformation in the Body-Fixed Frame 230</p> <p>12.6 Quadrupole Shape Variables 232</p> <p>12.7 Variety of Quadrupole Shapes 233</p> <p>12.8 Empirical Deformation 235</p> <p>12.9 Single-Particle Quantum Numbers 239</p> <p>12.10 Anisotropic Harmonic Oscillator 240</p> <p>12.11 Asymptotic Quantum Numbers 245</p> <p>12.12 Nilsson Potential 246</p> <p>12.13 More Examples 247</p> <p>References 250</p> <p><b>13 Pairing Correlations 251</b></p> <p>13.1 Physical Evidence 251</p> <p>13.2 Seniority Scheme 256</p> <p>13.3 Multipole Moments in the Seniority Scheme 260</p> <p>13.4 Degenerate Model 261</p> <p>13.5 Canonical Transformation 265</p> <p>13.6 BCS Theory: TrialWave Function 269</p> <p>13.7 Energy Minimization 271</p> <p>13.8 Solution for the Energy Gap 273</p> <p>13.9 Excitation Spectrum 276</p> <p>13.10 Condensation Energy 278</p> <p>13.11 Transition Amplitudes 279</p> <p>References 281</p> <p><b>14 Gamma-Radiation 283</b></p> <p>14.1 Introduction 283</p> <p>14.2 Electromagnetic Field and Gauge Invariance 283</p> <p>14.3 Photons 285</p> <p>14.4 Interaction of Radiation with Matter 288</p> <p>14.5 Radiation Probability 291</p> <p>14.6 Electric Dipole Radiation 292</p> <p>14.7 Electric Quadrupole Radiation 295</p> <p>14.8 Magnetic Dipole Radiation 296</p> <p>14.9 Photoabsorption 298</p> <p>14.10 Multipole Expansion 299</p> <p>References 303</p> <p><b>15 Nuclear Gamma-Transitions and Related Electromagnetic Processes 305</b></p> <p>15.1 Single-Particle Transitions 305</p> <p>15.2 Collective Transitions 308</p> <p>15.3 Nuclear Isomerism 310</p> <p>15.4 Isospin 312</p> <p>15.5 Structural Selection Rules 315</p> <p>15.6 Monopole Transitions 318</p> <p>15.7 Internal Electron Conversion 320</p> <p>15.8 Coulomb Excitation 322</p> <p>15.9 Nuclear Photoeffect 326</p> <p>15.10 Electron Scattering 330</p> <p>References 335</p> <p><b>16 Nuclear Rotation 337</b></p> <p>16.1 Introduction: Rotational Bands 337</p> <p>16.2 Finite Rotations 345</p> <p>16.3 Rotation Matrices as Functions on the Group 346</p> <p>16.4 Euler Angles 347</p> <p>16.5 Angular Momentum in Euler Angles 351</p> <p>16.6 Eigenfunctions of Angular Momentum 354</p> <p>16.7 Rigid Rotor 355</p> <p>16.8 Symmetry Properties 357</p> <p>16.9 Simplest Solutions 358</p> <p>16.10 Ground-State Band 359</p> <p>16.11 Intensity Rules 360</p> <p>16.12 Electric Quadrupole Moment 363</p> <p>16.13 MagneticMoment 366</p> <p>16.14 Symmetry Properties Revisited 367</p> <p>16.15 Coriolis Mixing and Decoupling Parameter 368</p> <p>16.16 Classical Rotation and Routhian 370</p> <p>16.17 Cranked Rotation 372</p> <p>16.18 Moment of Inertia 375</p> <p>16.19 Adiabatic Expansion 377</p> <p>16.20 Rotation of a Perfect Fermi Gas 379</p> <p>16.21 Perfect Bose Gas and Ideal Liquid 381</p> <p>16.22 Pairing Effects 384</p> <p>16.23 Band Crossing 385</p> <p>References 388</p> <p><b>17 Self-Consistent Field 391</b></p> <p>17.1 Exchange Interaction 391</p> <p>17.2 Hartree–Fock Equations 395</p> <p>17.3 Operator Formulation 397</p> <p>17.4 Single-Particle Density Matrix 398</p> <p>17.5 Hartree–Fock–Bogoliubov Approximation 400</p> <p>17.6 General Canonical Transformation 402</p> <p>17.7 Solutions 404</p> <p>17.8 Generalized Density Matrix 407</p> <p>17.9 Pairing and Particle Number Conservation 409</p> <p>17.10 Effective Interaction 411</p> <p>17.11 Skyrme Functionals 413</p> <p>17.12 Generalization to Nonzero Temperature 418</p> <p>References 419</p> <p><b>18 Collective Modes 421</b></p> <p>18.1 Schematic Model 421</p> <p>18.2 Random Phase Approximation 426</p> <p>18.3 Canonical Form of the RPA 427</p> <p>18.4 Model with Factorized Forces 430</p> <p>18.5 Collective Modes as Bosons 432</p> <p>18.6 Mapping of Dynamics 433</p> <p>18.7 Normalization and the Mass Parameter 435</p> <p>18.8 Symmetry Breaking 438</p> <p>18.9 Generator Coordinate Method 444</p> <p>References 446</p> <p><b>19 Bosons, Symmetries and Group Models 447</b></p> <p>19.1 Introduction 447</p> <p>19.2 Low-Lying Quadrupole Excitations as Interacting Bosons 448</p> <p>19.3 Algebra of Boson Operators 450</p> <p>19.4 Subgroups and Casimir Operators 452</p> <p>19.5 s–d Model 455</p> <p>19.6 Irreducible Representations and Quantum Numbers 458</p> <p>19.7 Vibrational Limit 461</p> <p>19.8 oG(6) Limit 466</p> <p>19.9 oKoM(3) Limit 468</p> <p>19.10 Shapes and Phase Transitions in the IBM 470</p> <p>References 473</p> <p><b>20 Statistical Properties 475</b></p> <p>20.1 Introduction 475</p> <p>20.2 Level Density: General Properties 478</p> <p>20.3 Darwin–FowlerMethod 480</p> <p>20.4 Relation to Statistical Thermodynamics 482</p> <p>20.5 Thermodynamics of a Nuclear Fermi Gas 483</p> <p>20.6 Statistics of Angular Momentum 486</p> <p>20.7 Shell Model Monte Carlo Approach 488</p> <p>20.8 Thermodynamics of Compound Reactions 490</p> <p>20.9 Statistical Description of Resonances 492</p> <p>References 497</p> <p><b>21 Nuclear Fission 499</b></p> <p>21.1 Introduction 499</p> <p>21.2 Alpha-Decay 502</p> <p>21.3 Neutron Fission 505</p> <p>21.4 Photofission 509</p> <p>21.5 Fission as a Large-Amplitude Collective Motion 510</p> <p>21.6 Nonadiabatic Effects and Dissipation 512</p> <p>21.7 Fission Isomers 514</p> <p>21.8 Parity Violation in Fission 518</p> <p>References 522</p> <p><b>22 Heavy-ion Reactions: Selected Topics 525</b></p> <p>22.1 Introduction 525</p> <p>22.2 Experimental Indications 526</p> <p>22.3 Macroscopic Description 530</p> <p>22.4 Equilibration as a Diffusion Process 534</p> <p>22.5 Toward a Microscopic Description 540</p> <p>22.6 Sketch of a More General Approach 541</p> <p>22.7 A Simple Model 545</p> <p>22.8 Nuclear Multifragmentation 547</p> <p>22.9 More about Fusion Reactions 550</p> <p>References 553</p> <p><b>23 Configuration Interaction Approach 555</b></p> <p>23.1 Center-of-Mass Problem 555</p> <p>23.2 Matrix Elements of Two-Body Interactions 558</p> <p>23.3 Ab initio Approach 559</p> <p>23.4 Three-Body Forces 564</p> <p>23.5 Semiempirical Effective Interactions 565</p> <p>23.6 Shell-Model Hamiltonian, Properties and Solutions 570</p> <p>23.7 Effective Non-Hermitian Hamiltonian 571</p> <p>23.8 From Isolated to Overlapping Resonances 576</p> <p>23.9 Realistic Nuclear Calculations 581</p> <p>References 583</p> <p><b>24 Weak Interactions 585</b></p> <p>24.1 Introduction 585</p> <p>24.2 Beta-Spectrum in the Simplest Case 587</p> <p>24.3 Nuclear Transitions 590</p> <p>24.4 Dirac Formalism 595</p> <p>24.5 Four-Fermion Theory 599</p> <p>24.6 Nuclear Structure Effects 601</p> <p>24.7 Parity Violation 604</p> <p>24.8 Electric Dipole Moment 607</p> <p>24.9 Nuclear Enhancement 609</p> <p>24.10 On theWay to ElectroweakTheory 612</p> <p>24.11 Higgs Mechanism 616</p> <p>24.12 Neutrino: Oscillations 618</p> <p>24.13 Neutrino:Majorana or Dirac? 620</p> <p>References 623</p> <p><b>25 Nucleus as a Chaotic System 627</b></p> <p>25.1 Introduction 627</p> <p>25.2 Strength Function 628</p> <p>25.3 Level Density Revisited 633</p> <p>25.4 Complexity ofWave Functions 636</p> <p>25.5 Correlations between Classes of States 639</p> <p>25.6 Invariant Entropy 643</p> <p>25.7 Random Matrix Ensembles 646</p> <p>25.8 Thermalization 650</p> <p>References 652</p> <p>General Nuclear Data Resources 655</p> <p>Index 657</p>
Vladimir Zelevinsky is professor at the Department of Physics and Astronomy and at the National Superconducting Cyclotron Laboratory at Michigan State University, USA. In the 1980s he was Head of the Theory Division at the Budker Institute and Head of Theoretical Physics at Novosibirsk University, Russia. He spent three years as visiting professor at the Niels Bohr Institute in Copenhagen, Denmark. He is the author of over 250 scientific publications, deputy editor of the EPL journal and associate editor of the journal Nuclear Physics. He is also the author of Quantum Physics, 2 Volume Set, published with Wiley VCH in 2010.<br> <br> Alexander Volya is professor of Physics at the Florida State University, USA. His education includes diploma from Tallinn Tynismae Science School, Estonia; bachelor's degree from St. Petersburg State University, Russia; doctoral degree in theoretical nuclear physics from Michigan State University; and postgraduate research work at the Argonne National Laboratory. In the fall of 2003, he joined the faculty at Florida State University where he currently leads a research program in theoretical nuclear physics and mesoscopic physics. He has published over 100 publications and has been regularly teaching nuclear physics courses at Florida State University.<br> <br>

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Quantum Wells, Wires and Dots
Quantum Wells, Wires and Dots
von: Paul Harrison
PDF ebook
51,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
126,99 €