Details

Physicochemical Fluid Dynamics in Porous Media


Physicochemical Fluid Dynamics in Porous Media

Applications in Geosciences and Petroleum Engineering
1. Aufl.

von: Mikhail Panfilov

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 07.12.2018
ISBN/EAN: 9783527806584
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A unique and timely book on understanding and tailoring the flow of fluids in porous materials <br> <br> Porous media play a key role in chemical processes, gas and water purification, gas storage and the development of new multifunctional materials. Understanding hydrodynamics in porous media is decisive for enabling a wide range of applications in materials science and chemical engineering. This all-encompassing book offers a timely overview of all flow and transport processes in which chemical or physicochemical phenomena such as dissolution, phase transition, reactions, adsorption, diffusion, capillarity, and surface phenomena are essential. It brings together both theoretical and experimental results and includes important industrial applications. <br> <br> Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering explains the thermodynamics of phase equilibria for multicomponent fluids, physicochemical models of single-phase and immiscible two-phase flow, based on the macroscopic theory of oil displacement by water. It also covers the theory of two-phase flow with partial miscibility and describes partially miscible flows with phase transitions by means of the negative saturation approach. The final chapters are devoted to flow with chemical reactions, based on the example of in-situ leaching of uranium, and flow with bio-chemical reactions in terms of the underground storage of hydrogen. <br> <br> -Brings together the theoretical and experimental results necessary for the understanding of hydrodynamics in porous media <br> -Covers important industrial applications such as underground leaching of uranium and underground storage of hydrogen <br> -Presents a state-of-the-art overview and summarizes the research results usually found only scattered in the literature <br> <br> Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering will appeal to chemical engineers, materials scientists, applied physicists, and mechanical engineers. <br>
<p>Preface xv</p> <p>Introduction xvii</p> <p><b>1 Thermodynamics of Pure Fluids 1</b></p> <p>1.1 Equilibrium of Single-phase Fluids – Equation of State 2</p> <p>1.1.1 Admissible Classes of EOS 2</p> <p>1.1.2 van derWaals EOS 3</p> <p>1.1.3 Soave-Redlish-Kwong EOS 3</p> <p>1.1.4 Peng–Robinson EOS 5</p> <p>1.1.5 Mixing Rules for Multicomponent Fluids 5</p> <p>1.2 Two-phase Equilibrium of Pure Fluids 5</p> <p>1.2.1 Pseudo-liquid/Pseudo-gas and True Liquid/Gas 6</p> <p>1.2.2 Equilibrium Conditions in Terms of Chemical Potentials 6</p> <p>1.2.3 Explicit Relationship for Chemical Potential 7</p> <p>1.2.4 Equilibrium Conditions in Terms of Pressure and Volumes 8</p> <p>1.2.5 Solvability of the Equilibrium Equation – Maxwell’s Rule 9</p> <p>1.2.6 Calculation of Gas–Liquid Coexistence 10</p> <p>1.2.7 Logarithmic Representation for Chemical Potential – Fugacity 11</p> <p><b>2 Thermodynamics of Mixtures 13</b></p> <p>2.1 Chemical Potential of an Ideal Gas Mixture 13</p> <p>2.1.1 Notations 13</p> <p>2.1.2 Definition and Properties of an Ideal Gas Mixture 14</p> <p>2.1.3 Entropy and Enthalpy of Ideal Mixing 15</p> <p>2.1.4 Chemical Potential of Ideal Gas Mixtures 16</p> <p>2.2 Chemical Potential of Nonideal Mixtures 17</p> <p>2.2.1 General Model for Chemical Potential of Mixtures 17</p> <p>2.2.2 Chemical Potential of Mixtures through Intensive Parameters 19</p> <p>2.3 Two-phase Equilibrium Equations for a Multicomponent Mixture 20</p> <p>2.3.1 General Form of Two-phase Equilibrium Equations 20</p> <p>2.3.2 Equilibrium Equations in the Case of Peng–Robinson EOS 21</p> <p>2.3.3 K-values 23</p> <p>2.3.4 Calculation of the Phase Composition (“flash”) 24</p> <p>2.3.5 Expected Phase Diagrams for Binary Mixtures 24</p> <p>2.4 Equilibrium in Dilute Mixtures 26</p> <p>2.4.1 Ideal Solution 26</p> <p>2.4.2 Chemical Potential for an Ideal Solution 27</p> <p>2.4.3 Equilibrium of Ideal Gas and Ideal Solution: Raoult’s Law 27</p> <p>2.4.4 Equilibrium of Dilute Solutions: Henry’s Law 28</p> <p>2.4.5 K-values for Ideal Mixtures 28</p> <p>2.4.6 Calculation of the Phase Composition 29</p> <p><b>3 Chemistry of Mixtures 31</b></p> <p>3.1 Adsorption 31</p> <p>3.1.1 Mechanisms of Adsorption 31</p> <p>3.1.2 Langmuir’s Model of Adsorption 32</p> <p>3.1.3 Types of Adsorption Isotherms 34</p> <p>3.1.4 Multicomponent Adsorption 35</p> <p>3.2 Chemical Reactions: Mathematical Description 36</p> <p>3.2.1 Elementary Stoichiometric System 36</p> <p>3.2.2 Reaction Rate 37</p> <p>3.2.3 Particle Balance through the Reaction Rate in a Homogeneous Reaction 37</p> <p>3.2.4 Particle Balance in a Heterogeneous Reaction 38</p> <p>3.2.5 Example 39</p> <p>3.3 Chemical Reaction: Kinetics 39</p> <p>3.3.1 Kinetic Law of Mass Action: Guldberg–Waage Law 39</p> <p>3.3.2 Kinetics of Heterogeneous Reactions 40</p> <p>3.3.3 Reaction Constant 41</p> <p>3.4 Other Nonconservative Effects with Particles 42</p> <p>3.4.1 Degradation of Particles 42</p> <p>3.4.2 Trapping of Particles 42</p> <p>3.5 Diffusion 42</p> <p>3.5.1 Fick’s Law 43</p> <p>3.5.2 Properties of the Diffusion Parameter 44</p> <p>3.5.3 Calculation of the Diffusion Coefficient in Gases and Liquids 45</p> <p>3.5.3.1 Diffusion in Gases 45</p> <p>3.5.3.2 Diffusion in Liquids 46</p> <p>3.5.4 Characteristic Values of the Diffusion Parameter 46</p> <p>3.5.5 About a Misuse of Diffusion Parameters 47</p> <p>3.5.5.1 A Misuse of Nondimensionless Concentrations 47</p> <p>3.5.5.2 Diffusion as the Effect of Mole Fraction Anomaly but not the Number of Moles 47</p> <p>3.5.6 Stefan–Maxwell Equations for Diffusion Fluxes 48</p> <p><b>4 Reactive Transport with a Single Reaction 51</b></p> <p>4.1 Equations of Multicomponent Single-Phase Transport 51</p> <p>4.1.1 Material Balance of Each Component 51</p> <p>4.1.2 Closure Relationships 52</p> <p>4.1.2.1 Chemical Terms 52</p> <p>4.1.2.2 Total Flow Velocity – Darcy’s Law 53</p> <p>4.1.2.3 Diffusion Flux – Fick’s Law 53</p> <p>4.1.3 Transport Equation 53</p> <p>4.1.4 Transport Equation for Dilute Solutions 55</p> <p>4.1.5 Example of Transport Equation for a Binary Mixture 55</p> <p>4.1.6 Separation of Flow and Transport 56</p> <p>4.2 Elementary Fundamental Solutions of 1D Transport Problems 56</p> <p>4.2.1 Convective Transport – TravelingWaves 57</p> <p>4.2.2 Transport with Diffusion 58</p> <p>4.2.3 Length of the Diffusion Zone 59</p> <p>4.2.4 Peclet Number 59</p> <p>4.2.5 Transport with Linear Adsorption – Delay Effect 60</p> <p>4.2.6 Transport with Nonlinear Adsorption: Diffusive TravelingWaves 60</p> <p>4.2.7 Origin of Diffusive TravelingWaves 62</p> <p>4.2.8 Transport with a Simplest Reaction (or Degradation/Trapping) 62</p> <p>4.2.9 Macrokinetic Effect: Reactive Acceleration of the Transport 63</p> <p>4.3 Reactive Transport in Underground Storage of CO2 64</p> <p>4.3.1 Problem Formulation and Solution 65</p> <p>4.3.2 Evolution of CO2 Concentration 66</p> <p>4.3.3 Evolution of the Concentration of Solid Reactant 67</p> <p>4.3.4 Evolution of the Concentration of the Reaction Product 67</p> <p>4.3.5 Mass of Carbon Transformed to Solid 68</p> <p><b>5 Reactive Transport with Multiple Reactions (Application to In Situ Leaching) 71</b></p> <p>ISL Technology 71</p> <p>5.1 Coarse Monoreaction Model of ISL 73</p> <p>5.1.1 Formulation of the Problem 73</p> <p>5.1.2 Analytical Solution 74</p> <p>5.2 MultireactionModel of ISL 75</p> <p>5.2.1 Main Chemical Reactions in the Leaching Zone 75</p> <p>5.2.2 Transport Equations 77</p> <p>5.2.3 Kinetics of Gypsum Precipitation 78</p> <p>5.2.4 Definite Form of the MathematicalModel 79</p> <p>5.3 Method of Splitting Hydrodynamics and Chemistry 80</p> <p>5.3.1 Principle of the Method 80</p> <p>5.3.2 Model Problem of In Situ Leaching 81</p> <p>5.3.3 Analytical Asymptotic Expansion: Zero-Order Terms 82</p> <p>5.3.4 First-Order Terms 83</p> <p>5.3.5 Solution in Definite Form 84</p> <p>5.3.6 CaseWithout Gypsum Deposition 84</p> <p>5.3.7 Analysis of the Process: Comparison with Numerical Data 85</p> <p>5.3.8 Experimental Results: Comparison withTheory 86</p> <p>5.3.9 Recovery Factor 88</p> <p><b>6 Surface and Capillary Phenomena 91</b></p> <p>6.1 Properties of an Interface 91</p> <p>6.1.1 Curvature of a Surface 91</p> <p>6.1.2 Signed Curvature 92</p> <p>6.1.3 Surface Tension 94</p> <p>6.1.4 Tangential Elasticity of an Interface 95</p> <p>6.2 Capillary Pressure and Interface Curvature 96</p> <p>6.2.1 Laplace’s Capillary Pressure 96</p> <p>6.2.2 Young–Laplace Equation for Static Interface 97</p> <p>6.2.3 Soap Films and Minimal Surfaces 99</p> <p>6.2.4 Catenoid as a Minimal Surface of Revolution 101</p> <p>6.2.5 Plateau’s Configurations for Intercrossed Soap Films 102</p> <p>6.3 Wetting 103</p> <p>6.3.1 Fluid–Solid Interaction: Complete and PartialWetting 103</p> <p>6.3.2 Necessary Condition of Young for PartialWetting 104</p> <p>6.3.3 Hysteresis of the Contact Angle 106</p> <p>6.3.4 CompleteWetting – Impossibility of Meniscus Existence 106</p> <p>6.3.5 Shape of Liquid Drops on Solid Surface 107</p> <p>6.3.6 Surfactants – Significance ofWetting for Oil Recovery 109</p> <p>6.4 Capillary Phenomena in a Pore 110</p> <p>6.4.1 Capillary Pressure in a Pore 110</p> <p>6.4.2 Capillary Rise 112</p> <p>6.4.3 CapillaryMovement – Spontaneous Imbibition 113</p> <p>6.4.4 Menisci in Nonuniform Pores – Principle of Pore Occupancy 114</p> <p>6.4.5 Capillary Trapping – Principle of Phase Immobilization 115</p> <p>6.4.6 Effective Capillary Pressure 116</p> <p>6.5 Augmented Meniscus and Disjoining Pressure 118</p> <p>6.5.1 Multiscale Structure of Meniscus 118</p> <p>6.5.2 Disjoining Pressure in Liquid Films 119</p> <p>6.5.3 Augmented Young–Laplace Equation 120</p> <p><b>7 MeniscusMovement in a Single Pore 123</b></p> <p>7.1 Asymptotic Model for Meniscus near the Triple Line 123</p> <p>7.1.1 Paradox of the Triple Line 123</p> <p>7.1.2 Flow Model in the Intermediate Zone (Lubrication Approximation) 124</p> <p>7.1.3 Tanner’s Differential Equation for Meniscus 125</p> <p>7.1.4 Shape of the Meniscus in the Intermediate Zone 127</p> <p>7.1.5 Particular Case of Small 𝜃: Cox–Voinov Law 128</p> <p>7.1.6 Scenarios of Meniscus Spreading 128</p> <p>7.2 Movement of the Augmented Meniscus 130</p> <p>7.2.1 Lubrication Approximation for Augmented Meniscus 130</p> <p>7.2.2 Adiabatic Precursor Films 132</p> <p>7.2.3 Diffusive Film 132</p> <p>7.3 Method of Diffuse Interface 133</p> <p>7.3.1 Principle Idea of the Method 133</p> <p>7.3.2 Capillary Force 134</p> <p>7.3.3 Free Energy and Chemical Potential 135</p> <p>7.3.4 Reduction to Cahn–Hilliard Equation 137</p> <p><b>8 Stochastic Properties of Phase Cluster in Pore Networks 139</b></p> <p>8.1 Connectivity of Phase Clusters 139</p> <p>8.1.1 Connectivity as a Measure of Mobility 139</p> <p>8.1.2 Triple Structure of Phase Cluster 140</p> <p>8.1.3 Network Models of Porous Media 140</p> <p>8.1.4 Effective Coordination Number 142</p> <p>8.1.5 Coordination Number and Medium Porosity 143</p> <p>8.2 Markov Branching Model for Phase Cluster 144</p> <p>8.2.1 Phase Cluster as a Branching Process 144</p> <p>8.2.2 Definition of a Branching Process 145</p> <p>8.2.3 Method of Generating Functions 147</p> <p>8.2.4 Probability of Creating a Finite Phase Cluster 148</p> <p>8.2.5 Length of the Phase Cluster 149</p> <p>8.2.6 Probability of an Infinite Phase Cluster 150</p> <p>8.2.7 Length-Radius Ratio Υ: Fitting with Experimental Data 151</p> <p>8.2.8 Cluster of Mobile Phase 153</p> <p>8.2.9 Saturation of the Mobile Cluster 154</p> <p>8.3 Stochastic Markov Model for Relative Permeability 155</p> <p>8.3.1 Geometrical Model of a Porous Medium 155</p> <p>8.3.2 Probability of Realizations 156</p> <p>8.3.3 Definition of Effective Permeability 156</p> <p>8.3.4 Recurrent Relationship for Space-Averaged Permeability 157</p> <p>8.3.5 Method of Generating Functions 158</p> <p>8.3.6 Recurrent Relationship for the Generating Function 159</p> <p>8.3.7 Stinchcombe’s Integral Equation for Function F(x) 160</p> <p>8.3.8 Case of Binary Distribution of Permeabilities 161</p> <p>8.3.9 Large Coordination Number 162</p> <p><b>9 Macroscale Theory of Immiscible Two-Phase Flow 165</b></p> <p>9.1 General Equations of Two-Phase Immiscible Flow 165</p> <p>9.1.1 Mass and Momentum Conservation 165</p> <p>9.1.2 Fractional Flow and Total Velocity 167</p> <p>9.1.3 Reduction to the Model of KinematicWaves 167</p> <p>9.2 Canonical Theory of Two-Phase Displacement 168</p> <p>9.2.1 1D Model of KinematicWaves (the Buckley–Leverett Model) 168</p> <p>9.2.2 Principle of Maximum 169</p> <p>9.2.3 Nonexistence of Continuous Solutions 170</p> <p>9.2.4 Hugoniot–Rankine Conditions at a Shock 171</p> <p>9.2.5 Entropy Conditions at a Shock 172</p> <p>9.2.6 Entropy Condition for Particular Cases 174</p> <p>9.2.7 Solution Pathway 175</p> <p>9.2.8 Piston-Like Shocks 176</p> <p>9.3 Oil Recovery 177</p> <p>9.3.1 Recovery Factor and Average Saturation 177</p> <p>9.3.2 Breakthrough Recovery 178</p> <p>9.3.3 Another Method of Deriving the Relationship for the Recovery Factor 179</p> <p>9.3.4 Graphical Determination of Breakthrough Recovery 179</p> <p>9.3.5 Physical Structure of Solution. Structure of Nondisplaced Oil 180</p> <p>9.3.6 Efficiency of Displacement 181</p> <p>9.4 Displacement with Gravity 182</p> <p>9.4.1 1D-model of KinematicWaves with Gravity 182</p> <p>9.4.2 Additional Condition at Shocks: Continuity w.r.t. Initial Data 183</p> <p>9.4.3 Descending Flow 185</p> <p>9.4.4 Ascending Flow 186</p> <p>9.5 Stability of Displacement 187</p> <p>9.5.1 Saffman–Taylor and Raleigh–Taylor Instability and Fingering 187</p> <p>9.5.2 Stability Criterion 188</p> <p>9.6 Displacement by Immiscible Slugs 189</p> <p>9.6.1 Setting of the Problem 190</p> <p>9.6.2 Solution of the Problem 191</p> <p>9.6.3 Solution for the Back Part 192</p> <p>9.6.4 Matching Two Solutions 192</p> <p>9.6.5 Three Stages of the Evolution in Time 192</p> <p>9.7 Segregation and Immiscible Gas Rising 196</p> <p>9.7.1 Canonical 1D Model 196</p> <p>9.7.2 Description of Gas Rising 197</p> <p>9.7.3 First Stage of the Evolution: Division of the Forward Bubble Boundary 198</p> <p>9.7.4 Second Stage: Movement of the Back Boundary 199</p> <p>9.7.5 Third Stage: Monotonic Elongation of the Bubble 200</p> <p><b>10 NonlinearWaves in Miscible Two-phase Flow (Application to Enhanced Oil Recovery) 203</b></p> <p>Expected Scenarios of Miscible Gas–Liquid Displacement 203</p> <p>10.1 Equations of Two-Phase Miscible Flow 205</p> <p>10.1.1 General System of Equations 205</p> <p>10.1.2 Formulation through the Total Velocity and Fractional Flow 206</p> <p>10.1.3 Ideal Mixtures; Volume Fractions 207</p> <p>10.1.4 Conversion to the Model of KinematicWaves 208</p> <p>10.1.5 Particular Case of a Binary Mixture 209</p> <p>10.1.5.1 Conclusion 209</p> <p>10.2 Characterization of Species Dissolution by Phase Diagrams 209</p> <p>10.2.1 Thermodynamic Variance and Gibbs’ Phase Rule 209</p> <p>Example 210</p> <p>10.2.2 Ternary Phase Diagrams 211</p> <p>10.2.3 Tie Lines 213</p> <p>10.2.4 Tie-Line Parametrization of Phase Diagrams (Parameter 𝛼) 214</p> <p>10.2.5 Saturation of Gas 216</p> <p>10.2.6 Phase Diagrams for Constant K-Values 216</p> <p>10.2.7 Phase Diagrams for Linear Repartition Function: 𝛽 = −𝛾𝛼 219</p> <p>10.3 Canonical Model of Miscible EOR 221</p> <p>10.3.1 Problem Setting 221</p> <p>10.3.2 Fractional Flow of a Chemical Component 222</p> <p>10.4 Shocks 224</p> <p>10.4.1 Hugoniot–Rankine and Entropy Conditions at a Shock. Admissible Shocks 225</p> <p>10.4.2 Mechanical Shock (C-shock) and Its Graphical Image 226</p> <p>10.4.3 Chemical Shock (C𝛼-shock) and Its Graphical Image 227</p> <p>10.4.4 Shocks of Phase Transition 228</p> <p>10.4.5 Weakly Chemical Shock 230</p> <p>10.4.6 Three Methods of Changing the Phase Composition 231</p> <p>10.4.7 Solution Pathway 231</p> <p>10.5 Oil Displacement by Dry Gas 232</p> <p>10.5.1 Description of Fluids and Initial Data 232</p> <p>10.5.2 Algorithm of Selecting the Pathway 233</p> <p>10.5.3 Behavior of Liquid and Gas Composition 235</p> <p>10.5.4 Behavior of Liquid Saturation 236</p> <p>10.5.5 Physical Behavior of the Process 237</p> <p>10.5.6 EOR Efficiency 239</p> <p>10.6 Oil Displacement byWet Gas 239</p> <p>10.6.1 Formulation of the Problem and the Pathway 239</p> <p>10.6.2 Solution to the Problem. Physical Explanation 240</p> <p>10.6.3 Comparison with Immiscible Gas Injection 242</p> <p>10.6.4 Injection of Overcritical Gas 243</p> <p>10.6.5 Injection of Overcritical Gas in Undersaturated Single-Phase Oil 245</p> <p>10.7 Gas Recycling in Gas-Condensate Reservoirs 246</p> <p>10.7.1 Techniques of Enhanced Condensate Recovery 246</p> <p>10.7.2 Case I: Dry Gas Recycling: Mathematical Formulation 247</p> <p>10.7.3 Solution to the Problem of Dry Gas Recycling 247</p> <p>10.7.4 Case II: Injection of Enriched Gas 249</p> <p>10.7.4.1 Conclusion 251</p> <p>10.8 Chemical Flooding 251</p> <p>10.8.1 Conservation Equations 251</p> <p>10.8.2 Reduction to the Model of KinematicWaves 252</p> <p>10.8.3 Diagrams of Fractional Flow ofWater F(s, c) 253</p> <p>10.8.4 Shocks and Hugoniot–Rankine Conditions 253</p> <p>10.8.5 Solution of the Riemann Problem 255</p> <p>10.8.6 Impact of the Adsorption 256</p> <p><b>11 Counter Waves in Miscible Two-phase Flow with Gravity (Application to CO2 &H2 Storage) 257</b></p> <p>Introducing Notes 257</p> <p>11.1 Two-component Two-phase Flow in Gravity Field 258</p> <p>11.1.1 Formulation 259</p> <p>11.1.2 Solution before Reaching the Barrier 261</p> <p>11.1.3 ReverseWave Reflected from Barrier 261</p> <p>11.1.4 Calculation of the Concentrations at the Shocks 263</p> <p>11.1.5 Rate of Gas Rising and Bubble Growth under the Barriers 264</p> <p>11.1.6 Comparison with Immiscible Two-phase Flow 264</p> <p>11.2 Three-component Flow in Gravity Field 265</p> <p>11.2.1 Problem Setting 265</p> <p>11.2.2 Solution of the Riemann Problem 266</p> <p>11.2.3 Propagation of the Reverse Wave under the Barrier 268</p> <p><b>12 Flow with Variable Number of Phases: Method of Negative Saturations 271</b></p> <p>12.1 Method NegSat for Two-phase Fluids 271</p> <p>12.1.1 Interface of Phase Transition and Nonequilibrium States 271</p> <p>12.1.2 Essence of the Method Negsat 273</p> <p>12.1.3 Principle of Equivalence 275</p> <p>12.1.4 Proof of the Equivalence Principle 276</p> <p>12.1.5 Density and Viscosity of Fictitious Phases 277</p> <p>12.1.6 Extended Saturation – Detection of the Number of Phases 277</p> <p>12.1.7 Equivalence Principle for Flow with Gravity 279</p> <p>12.1.8 Equivalence Principle for Flow with Gravity and Diffusion 279</p> <p>12.1.9 Principle of Equivalence for Ideal Mixing 281</p> <p>12.1.10 Physical and Mathematical Consistency of the Equivalent Fluids 282</p> <p>12.2 Hyperbolic-parabolic Transition 282</p> <p>12.2.1 Phenomenon of Hyperbolic-parabolic Transition (HP Transition) 282</p> <p>12.2.2 Derivation of the Model (12.23) 284</p> <p>12.2.3 Purely Hyperbolic Case 284</p> <p>12.2.4 Case of Hyperbolic-parabolic Transition 285</p> <p>12.2.5 Generalization of Hugoniot–Rankine Conditions for a Shock of HP-transition 287</p> <p>12.2.6 Regularization by the Capillarity 288</p> <p>12.2.7 Reduction to VOF or Level-set Method for Immiscible Fluids 290</p> <p><b>13 Biochemical Fluid Dynamics of Porous Media 291</b></p> <p>13.1 Microbiological Chemistry 291</p> <p>13.1.1 Forms of Existence of Microorganisms 291</p> <p>13.1.2 Bacterial Metabolism 292</p> <p>13.1.3 Bacterial Movement 293</p> <p>13.1.4 Chemotaxis 294</p> <p>13.1.5 Population Dynamics 295</p> <p>13.1.6 Kinetics of Population Growth and Decay: Experiment 295</p> <p>13.1.6.1 Population Decay 295</p> <p>13.1.6.2 Population Growth 296</p> <p>13.1.7 Kinetics of Population Growth: MathematicalModels 297</p> <p>13.1.8 Coupling between Nutrient Consumption and Bacterial Growth 298</p> <p>13.1.9 Experimental Data on Bacterial Kinetics 300</p> <p>13.2 Bioreactive Waves in Microbiological Enhanced Oil Recovery 300</p> <p>13.2.1 The Essence of the Process 300</p> <p>13.2.2 Metabolic Process 302</p> <p>13.2.3 Assumptions 303</p> <p>13.2.4 Mass Balance Equations 303</p> <p>13.2.5 Description of the Impact of the Surfactant 304</p> <p>13.2.6 Reduction to the Model of KinematicWaves 304</p> <p>13.2.7 1D MEOR Problem 305</p> <p>13.2.8 Solution and Analysis of the MEOR Problem 305</p> <p>13.3 NonlinearWaves in Microbiological Underground Methanation Reactors 308</p> <p>13.3.1 Underground Methanation and Hydrogen Storage 308</p> <p>13.3.2 Biochemical Processes in an Underground Methanation Reactor 309</p> <p>13.3.3 Composition of the Injected Gas 311</p> <p>13.3.4 MathematicalModel of Underground Methanation 311</p> <p>13.3.5 KinematicWave Model 313</p> <p>13.3.6 Asymptotic Model for Biochemical Equilibrium 314</p> <p>13.3.7 Particular Case of Biochemical Equilibrium 315</p> <p>13.3.8 Solution of the Riemann Problem 315</p> <p>13.3.9 Comparison with the CaseWithout Bacteria. Impact of Bacteria 317</p> <p>13.4 Self-organization in Biochemical Dynamical Systems (Application to Underground Methanation) 318</p> <p>13.4.1 Integral Material Balance in the Underground Reactor 318</p> <p>13.4.2 Reduction to a Dynamical System 319</p> <p>13.4.3 Singular Point Analysis – Oscillatory Regimes 320</p> <p>13.4.4 Existence of a Limit Cycle – Auto-oscillations 321</p> <p>13.4.5 Phase Portrait of Auto-oscillations 323</p> <p>13.5 Self-organization in Reaction–Diffusion Systems 325</p> <p>13.5.1 Equations of Underground Methanation with Diffusion 325</p> <p>13.5.2 Turing’s Instability 327</p> <p>13.5.3 Limit Space OscillatoryWaves at 𝜀 = 0 328</p> <p>13.5.4 Three Types of Limit Patterns at Large Times 329</p> <p>13.5.5 Exact Analytical Solution of Problem (13.52). Estimation of Parameters 330</p> <p>13.5.6 Limit Two-scale Spatial Oscillatory Patterns at 𝜀 > 0 331</p> <p>13.5.7 Two-scale Asymptotic Expansion of Problem (13.59) 333</p> <p>13.5.7.1 Two-scale Formulation 333</p> <p>13.5.7.2 Two-scale Expansion 334</p> <p>13.5.7.3 Zero-order Terms c<sub>0</sub> and n<sub>0</sub> 334</p> <p>13.5.7.4 First-order Term n<sub>1</sub> 335</p> <p>13.5.7.5 Second-order Term c<sub>2</sub> 336</p> <p>13.5.8 2D Two-scale Spatial Patterns 336</p> <p>A Chemical Potential of a Pure Component from the Homogeneity of Gibbs Energy 339</p> <p>B Chemical Potential for Cubic EOS 341</p> <p>C Chemical Potential of Mixtures from the Homogeneity of Gibbs Energy 343</p> <p>D Calculation of the Integral in (2.25a) 347</p> <p>E Hugoniot–Rankine Conditions 349</p> <p>F Numerical Code (Matlab) for Calculating Phase Diagrams of a Pure Fluid 351</p> <p>Bibliography 355</p> <p>Index 363</p>
<p><b><i>Mikhail Panfilov, D.Sc.,</i></b> <i>is Professor at the Institute of Mathematics Elie Cartan - University of Lorraine/CNRS, and at the Institute Jean le Rond d'Alembert - Sorbonne University/CNRS. Born and studied in Moscow. He is twice graduated in applied mathematics/mechanics and petroleum engineering. He worked at the Oil & Gas Research Institute of the Academy of Sciences in Moscow. In 2000 he moved to France. He published more than 80 papers in international reviews and two monographs. He is a State Prize Laureate of Russia for Science (1997) and several Excellence Awards of the French Ministry of Higher Education and Research.</i>
<p><b>A unique and timely book on understanding and tailoring the flow of fluids in porous materials</b> <p><b>P</b>orous media play a key role in chemical processes, gas and water purification, gas storage and the development of new multifunctional materials. Understanding hydrodynamics in porous media is decisive for enabling a wide range of applications in materials science and chemical engineering. This all-encompassing book offers a timely overview of all flow and transport processes in which chemical or physicochemical phenomena such as dissolution, phase transition, reactions, adsorption, diffusion, capillarity, and surface phenomena are essential. It brings together both theoretical and experimental results and includes important industrial applications. <p><i>Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering</i> explains the thermodynamics of phase equilibria for multicomponent fluids, physicochemical models of single-phase and immiscible two-phase flow, based on the macroscopic theory of oil displacement by water. It also covers the theory of two-phase flow with partial miscibility and describes partially miscible flows with phase transitions by means of the negative saturation approach. The final chapters are devoted to flow with chemical reactions, based on the example of in-situ leaching of uranium, and flow with bio-chemical reactions in terms of the underground storage of hydrogen. <ul> <li>Brings together the theoretical and experimental results necessary for the understanding of hydrodynamics in porous media</li> <li>Covers important industrial applications such as underground leaching of uranium and underground storage of hydrogen</li> <li>Presents a state-of-the-art overview and summarizes the research results usually found only scattered in the literature</li> </ul> <p><i>Physicochemical Fluid Dynamics in Porous Media: Applications in Geoscience and Petroleum Engineering</i> will appeal to chemical engineers, materials scientists, applied physicists, and mechanical engineers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €