Details

Physical Electrochemistry


Physical Electrochemistry

Fundamentals, Techniques, and Applications
2. Aufl.

von: Noam Eliaz, Eliezer Gileadi

88,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 21.09.2018
ISBN/EAN: 9783527341429
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This bestselling textbook on physical electrochemistry caters to the needs of advanced undergraduate and postgraduate students of chemistry, materials engineering, mechanical engineering, and chemical engineering. It is unique in covering both the more fundamental, physical aspects as well as the application-oriented practical aspects in a balanced manner. In addition it serves as a self-study text for scientists in industry and research institutions working in related fields. The book can be divided into three parts: (i) the fundamentals of electrochemistry; (ii) the most important electrochemical measurement techniques; and (iii) applications of electrochemistry in materials science and engineering, nanoscience and nanotechnology, and industry.<br> The second edition has been thoroughly revised, extended and updated to reflect the state-of-the-art in the field, for example, electrochemical printing, batteries, fuels cells, supercapacitors, and hydrogen storage.
<p>Preface xvii</p> <p>Symbols and Abbreviations xix</p> <p><b>1 Introduction 1</b></p> <p>1.1 General Considerations 1</p> <p>1.1.1 The Transition from Electronic to Ionic Conduction 1</p> <p>1.1.2 The Resistance of the Interface can be Infinite 2</p> <p>1.1.3 Mass-Transport Limitation 2</p> <p>1.1.4 The Capacitance at the Metal/Solution Interphase 4</p> <p>1.2 Polarizable and Nonpolarizable Interfaces 4</p> <p>1.2.1 Phenomenology 4</p> <p>1.2.2 The Equivalent Circuit Representation 5</p> <p>Further Reading 7</p> <p><b>2 The Potentials of Phases 9</b></p> <p>2.1 The Driving Force 9</p> <p>2.1.1 Definition of the Electrochemical Potential 9</p> <p>2.1.2 Separability of the Chemical and the Electrical Terms 10</p> <p>2.2 Two Cases of Special Interest 11</p> <p>2.2.1 Equilibrium of a Species Between two Phases in Contact 11</p> <p>2.2.2 Two Identical Phases not at Equilibrium 12</p> <p>2.3 The Meaning of the Standard Hydrogen Electrode (SHE) Scale 13</p> <p>Further Reading 15</p> <p><b>3 Fundamental Measurements in Electrochemistry 17</b></p> <p>3.1 Measurement of Current and Potential 17</p> <p>3.1.1 The Cell Voltage is the Sum of Several Potential Differences 17</p> <p>3.1.2 Use of a Nonpolarizable Counter Electrode 17</p> <p>3.1.3 The Three-Electrode Setup 18</p> <p>3.1.4 Residual jR<sub>S</sub> Potential Drop in aThree-Electrode Cell 18</p> <p>3.2 Cell Geometry and the Choice of the Reference Electrode 19</p> <p>3.2.1 Types of Reference Electrodes 19</p> <p>3.2.2 Use of an Auxiliary Reference Electrode for the Study of Fast Transients 20</p> <p>3.2.3 Calculating the Uncompensated Solution Resistance for a few Simple Geometries 21</p> <p>3.2.3.1 Planar Configuration 21</p> <p>3.2.3.2 Cylindrical Configuration 21</p> <p>3.2.3.3 Spherical Symmetry 22</p> <p>3.2.4 Positioning the Reference Electrode 22</p> <p>3.2.5 Edge Effects 24</p> <p>Further Reading 26</p> <p><b>4 Electrode Kinetics: Some Basic Concepts 27</b></p> <p>4.1 Relating Electrode Kinetics to Chemical Kinetics 27</p> <p>4.1.1 The Relation of Current Density to Reaction Rate 27</p> <p>4.1.2 The Relation of Potential to Energy of Activation 28</p> <p>4.1.3 Mass-Transport Limitation Versus Charge-Transfer Limitation 30</p> <p>4.1.4 The Thickness of the Nernst Diffusion Layer 31</p> <p>4.2 Methods of Measurement 33</p> <p>4.2.1 Potential Control Versus Current Control 33</p> <p>4.2.2 The Need to Measure Fast Transients 35</p> <p>4.2.3 Polarography and the Dropping Mercury Electrode (DME) 37</p> <p>4.3 Rotating Electrodes 40</p> <p>4.3.1 The Rotating Disk Electrode (RDE) 40</p> <p>4.3.2 The Rotating Cone Electrode (RConeE) 44</p> <p>4.3.3 The Rotating Ring Disk Electrode (RRDE) 45</p> <p>Further Reading 47</p> <p><b>5 Single-Step Electrode Reactions 49</b></p> <p>5.1 The Overpotential, 𝜂 49</p> <p>5.1.1 Definition and Physical Meaning of Overpotential 49</p> <p>5.1.2 Types of Overpotential 51</p> <p>5.2 Fundamental Equations of Electrode Kinetics 52</p> <p>5.2.1 The Empirical Tafel Equation 52</p> <p>5.2.2 The Transition-State Theory 53</p> <p>5.2.3 The Equation for a Single-Step Electrode Reaction 54</p> <p>5.2.4 Limiting Cases of the General Equation 56</p> <p>5.3 The Symmetry Factor, 𝛽, in Electrode Kinetics 59</p> <p>5.3.1 The Definition of 𝛽 59</p> <p>5.3.2 The Numerical Value of 𝛽 60</p> <p>5.4 The Marcus Theory of Charge Transfer 61</p> <p>5.4.1 Outer-Sphere Electron Transfer 61</p> <p>5.4.2 The Born–Oppenheimer Approximation 62</p> <p>5.4.3 The Calculated Energy of Activation 63</p> <p>5.4.4 The Value of 𝛽 and its Potential Dependence 64</p> <p>5.5 Inner-Sphere Charge Transfer 65</p> <p>5.5.1 Metal Deposition 65</p> <p>Further Reading 66</p> <p><b>6 Multistep Electrode Reactions 67</b></p> <p>6.1 Mechanistic Criteria 67</p> <p>6.1.1 The Transfer Coefficient, 𝛼, and its Relation to the Symmetry Factor, 𝛽 67</p> <p>6.1.2 Steady State and Quasi-Equilibrium 69</p> <p>6.1.3 Calculation of the Tafel Slope 71</p> <p>6.1.4 Reaction Orders in Electrode Kinetics 74</p> <p>6.1.5 The Effect of pH on Reaction Rates 77</p> <p>6.1.6 The Enthalpy of Activation 79</p> <p>Further Reading 81</p> <p><b>7 Specific Examples of Multistep Electrode Reactions 83</b></p> <p>7.1 Experimental Considerations 83</p> <p>7.1.1 Multiple Processes in Parallel 83</p> <p>7.1.2 The Level of Impurity that can be Tolerated 84</p> <p>7.2 The Hydrogen Evolution Reaction (HER) 87</p> <p>7.2.1 Hydrogen Evolution on Mercury 87</p> <p>7.2.2 Hydrogen Evolution on Platinum 89</p> <p>7.3 Possible Paths for the Oxygen Evolution Reaction 91</p> <p>7.4 The Role and Stability of Adsorbed Intermediates 94</p> <p>7.5 Adsorption Energy and Catalytic Activity 95</p> <p>Further Reading 96</p> <p><b>8 The Electrical Double Layer (EDL) 97</b></p> <p>8.1 Models of Structure of the EDL 97</p> <p>8.1.1 Phenomenology 97</p> <p>8.1.2 The Parallel-Plate Model of Helmholtz 99</p> <p>8.1.3 The Diffuse Double Layer Model of Gouy and Chapman 100</p> <p>8.1.4 The Stern Model 103</p> <p>8.1.5 The Role of the Solvent at the Interphase 105</p> <p>Further Reading 107</p> <p><b>9 Electrocapillary 109</b></p> <p>9.1 Thermodynamics 109</p> <p>9.1.1 Adsorption and Surface Excess 109</p> <p>9.1.2 The Gibbs Adsorption Isotherm 111</p> <p>9.1.3 The Electrocapillary Equation 112</p> <p>9.2 Methods of Measurement and Some Results 114</p> <p>9.2.1 The Electrocapillary Electrometer 114</p> <p>9.2.2 Some Experimental Results 119</p> <p>9.2.2.1 The Adsorption of Ions 119</p> <p>9.2.2.2 Adsorption of NeutralMolecules 120</p> <p>Further Reading 122</p> <p><b>10 Intermediates in Electrode Reactions 123</b></p> <p>10.1 Adsorption Isotherms for Intermediates Formed by Charge Transfer 123</p> <p>10.1.1 General 123</p> <p>10.1.2 The Langmuir Isotherm and its Limitations 123</p> <p>10.1.3 Application of the Langmuir Isotherm for Charge-Transfer Processes 125</p> <p>10.1.4 The Frumkin Adsorption Isotherms 126</p> <p>10.2 The Adsorption Pseudocapacitance Cϕ 127</p> <p>10.2.1 Formal Definition of C<sub>ϕ</sub> and its Physical Understanding 127</p> <p>10.2.2 The Equivalent-Circuit Representation 129</p> <p>10.2.3 Calculation of C<sub>ϕ</sub> as a function of 𝜃 and E 130</p> <p>Further Reading 133</p> <p><b>11 Underpotential Deposition and Single-Crystal Electrochemistry 135</b></p> <p>11.1 Underpotential Deposition (UPD) 135</p> <p>11.1.1 Definition and Phenomenology 135</p> <p>11.1.2 UPD on Single Crystals 139</p> <p>11.1.3 Underpotential Deposition of Atomic Oxygen and Hydrogen 141</p> <p>Further Reading 142</p> <p><b>12 Electrosorption 145</b></p> <p>12.1 Phenomenology 145</p> <p>12.1.1 What is Electrosorption? 145</p> <p>12.1.2 Electrosorption of Neutral Organic Molecules 147</p> <p>12.1.3 The Potential of Zero Charge, E<sub>pzc</sub>, and its Importance in Electrosorption 148</p> <p>12.1.4 TheWork Function and the Potential of Zero Charge 151</p> <p>12.2 Adsorption Isotherms for Neutral Species 152</p> <p>12.2.1 General Comments 152</p> <p>12.2.2 The Parallel-Plate Model of Frumkin et al. 153</p> <p>12.2.3 The Water Replacement Model of Bockris et al. 155</p> <p>Further Reading 157</p> <p><b>13 Fast Transients, the Time-Dependent Diffusion Equation,and Microelectrodes 159</b></p> <p>13.1 The Need for Fast Transients 159</p> <p>13.1.1 General 159</p> <p>13.1.2 Small-Amplitude Transients 161</p> <p>13.1.3 The Sluggish Response of the Electrochemical Interphase 162</p> <p>13.1.4 How can the Slow Response of the Interphase be Overcome? 162</p> <p>13.1.4.1 Galvanostatic Transients 162</p> <p>13.1.4.2 The Double-Pulse GalvanostaticMethod 163</p> <p>13.1.4.3 The Coulostatic (Charge-Injection) Method 164</p> <p>13.2 The Diffusion Equation 167</p> <p>13.2.1 The Boundary Conditions of the Diffusion Equation 167</p> <p>13.2.1.1 Potential Step, Reversible Case (Chrono-Amperometry) 168</p> <p>13.2.1.2 Potential Step, High Overpotential Region (Chrono-Amperometry) 171</p> <p>13.2.1.3 Current Step (Chronopotentiometry) 172</p> <p>13.3 Microelectrodes 174</p> <p>13.3.1 The Unique Features of Microelectrodes 174</p> <p>13.3.2 Enhancement of Diffusion at a Microelectrode 175</p> <p>13.3.3 Reduction of the Solution Resistance 176</p> <p>13.3.4 The Choice between Single Microelectrodes and Large Ensembles 176</p> <p>Further Reading 178</p> <p><b>14 Linear Potential Sweep and Cyclic Voltammetry 181</b></p> <p>14.1 Three Types of Linear Potential Sweep 181</p> <p>14.1.1 Very Slow Sweeps 181</p> <p>14.1.2 Studies of Oxidation or Reduction of Species in the Bulk of the Solution 182</p> <p>14.1.3 Studies of Oxidation or Reduction of Species Adsorbed on the Surface 182</p> <p>14.1.4 Double-Layer Charging Currents 183</p> <p>14.1.5 The Form of the Current–Potential Relationship 185</p> <p>14.2 Solution of the Diffusion Equations 186</p> <p>14.2.1 The Reversible Region 186</p> <p>14.2.2 The High-Overpotential Region 187</p> <p>14.3 Uses and Limitations of the Linear Potential Sweep Method 188</p> <p>14.4 Cyclic Voltammetry for Monolayer Adsorption 190</p> <p>14.4.1 Reversible Region 190</p> <p>14.4.2 The High-Overpotential Region 192</p> <p>Further Reading 193</p> <p><b>15 Electrochemical Impedance Spectroscopy (EIS) 195</b></p> <p>15.1 Introduction 195</p> <p>15.2 Graphical Representations 200</p> <p>15.3 The Effect of Diffusion Limitation –TheWarburg Impedance 203</p> <p>15.4 Advantages, Disadvantages, and Applications of EIS 206</p> <p>Further Reading 211</p> <p><b>16 The Electrochemical Quartz Crystal Microbalance (EQCM) 213</b></p> <p>16.1 Fundamental Properties of the EQCM 213</p> <p>16.1.1 Introduction 213</p> <p>16.1.2 The EQCM 214</p> <p>16.1.3 The Effect of Viscosity 217</p> <p>16.1.4 Immersion in a Liquid 218</p> <p>16.1.5 Scales of Roughness 218</p> <p>16.2 Impedance Analysis of the EQCM 219</p> <p>16.2.1 The Extended Equation for the Frequency Shift 219</p> <p>16.2.2 Other Factors Influencing the Frequency Shift 220</p> <p>16.3 Uses of the EQCM as a Microsensor 220</p> <p>16.3.1 Advantages and Limitations 220</p> <p>16.3.2 Some Applications of the EQCM 222</p> <p>Further Reading 225</p> <p><b>17 Corrosion 227</b></p> <p>17.1 The Definition of Corrosion 227</p> <p>17.2 Corrosion Costs 230</p> <p>17.3 Thermodynamics of Corrosion 232</p> <p>17.3.1 Introduction and Important Terms 232</p> <p>17.3.2 Electrode Potentials and the Standard Electromotive Force (EMF) Series 236</p> <p>17.3.3 The Dependence of Free Energy on the Equilibrium Constant and Cell Potential 241</p> <p>17.3.4 The Nernst Equation 241</p> <p>17.3.5 The Potential–pH (Pourbaix) Diagrams 242</p> <p>17.4 Kinetics of Corrosion 252</p> <p>17.4.1 Introduction and Important Terms 252</p> <p>17.4.2 Two Limiting Cases of the Butler–Volmer Equation: Tafel Extrapolation and Polarization Resistance 255</p> <p>17.4.3 Corrosion Rate 257</p> <p>17.4.4 The Mixed-Potential Theory and the Evans Diagrams 257</p> <p>17.4.5 Passivation and its Breakdown 264</p> <p>17.5 Corrosion Measurements 270</p> <p>17.5.1 Non-Electrochemical Tests 270</p> <p>17.5.2 Electrochemical Tests 272</p> <p>17.5.2.1 Open-Circuit Potential (OCP) Measurements 272</p> <p>17.5.2.2 Polarization Tests 273</p> <p>17.5.2.3 Linear Polarization Resistance (LPR) 277</p> <p>17.5.2.4 Zero-Resistance Ammetry (ZRA) 277</p> <p>17.5.2.5 Electrochemical Noise (EN) Measurements 278</p> <p>17.5.2.6 Electrochemical Hydrogen Permeation Tests 279</p> <p>17.5.3 Complementary Surface-Sensitive Analytical Characterization Techniques 284</p> <p>17.6 Forms of Corrosion 286</p> <p>17.6.1 Uniform (General) Corrosion 286</p> <p>17.6.2 Localized Corrosion 289</p> <p>17.6.2.1 Crevice Corrosion 289</p> <p>17.6.2.2 Filiform Corrosion 291</p> <p>17.6.2.3 Pitting Corrosion 291</p> <p>17.6.3 Intergranular Corrosion 293</p> <p>17.6.3.1 Sensitization 293</p> <p>17.6.3.2 Exfoliation 294</p> <p>17.6.4 Dealloying 295</p> <p>17.6.5 Galvanic (Bimetallic) Corrosion 295</p> <p>17.6.6 Environmentally Induced Cracking (EIC)/Environment-Assisted Cracking (EAC) 297</p> <p>17.6.6.1 Hydrogen Embrittlement (HE) 297</p> <p>17.6.6.2 Hydrogen-Induced Blistering 299</p> <p>17.6.6.3 Hydrogen Attack 299</p> <p>17.6.6.4 Stress Corrosion Cracking (SCC) 300</p> <p>17.6.6.5 Corrosion Fatigue (CF) 303</p> <p>17.6.7 Erosion Corrosion 304</p> <p>17.6.8 Microbiological Corrosion (MIC) 305</p> <p>17.7 Corrosion Protection 308</p> <p>17.7.1 Cathodic Protection 308</p> <p>17.7.1.1 Cathodic Protection with Sacrificial Anodes 308</p> <p>17.7.1.2 Impressed-Current Cathodic Protection (ICCP) 310</p> <p>17.7.2 Anodic Protection 312</p> <p>17.7.3 Corrosion Inhibitors 313</p> <p>17.7.4 Coatings 315</p> <p>17.7.5 Other Mitigation Practices 320</p> <p>Further Reading 321</p> <p><b>18 Electrochemical Deposition 323</b></p> <p>18.1 Electroplating 323</p> <p>18.1.1 Introduction 323</p> <p>18.1.2 The Fundamental Equations of Electroplating 324</p> <p>18.1.3 Practical Aspects of Metal Deposition 325</p> <p>18.1.4 Hydrogen Evolution as a Side Reaction 326</p> <p>18.1.5 Plating of Noble Metals 327</p> <p>18.1.6 Current Distribution in Electroplating 328</p> <p>18.1.6.1 Uniformity of Current Distribution 328</p> <p>18.1.6.2 The Faradaic Resistance (RF) and the Solution Resistance (RS) 328</p> <p>18.1.6.3 The DimensionlessWagner Number 329</p> <p>18.1.6.4 Kinetically Limited Current Density 333</p> <p>18.1.7 Throwing Power 334</p> <p>18.1.7.1 Macro Throwing Power 334</p> <p>18.1.7.2 Micro Throwing Power 334</p> <p>18.1.8 The Use of Additives 336</p> <p>18.1.9 The Microstructure of Electrodeposits and the Evolution of Intrinsic Stresses 339</p> <p>18.1.10 Pulse Plating 341</p> <p>18.1.11 Plating from Nonaqueous Solutions 343</p> <p>18.1.11.1 Statement of the Problem 343</p> <p>18.1.11.2 Methods of Plating Al 345</p> <p>18.1.12 Electroplating of Alloys 346</p> <p>18.1.12.1 General Observations 346</p> <p>18.1.12.2 Some Specific Examples 349</p> <p>18.1.13 The Mechanism of Charge Transfer in Metal Deposition 351</p> <p>18.1.13.1 Metal Ions Crossing the Interphase Carry the Charge across it 351</p> <p>18.2 Electroless Deposition of Metals 352</p> <p>18.2.1 Some Fundamental Aspects of Electroless Plating of Metals and Alloys 352</p> <p>18.2.2 The Activation Process 353</p> <p>18.2.3 The Reducing Agent 353</p> <p>18.2.4 The Complexing Agent 354</p> <p>18.2.5 The Mechanism of Electroless Deposition 354</p> <p>18.2.6 Advantages and Disadvantages of Electroless Plating Compared to Electroplating 357</p> <p>18.3 Electrophoretic Deposition (EPD) 358</p> <p>Further Reading 361</p> <p><b>19 Electrochemical Nanotechnology 363</b></p> <p>19.1 Introduction 363</p> <p>19.2 Nanoparticles and Catalysis 363</p> <p>19.2.1 Surfaces and Interfaces 364</p> <p>19.2.2 The Vapor Pressure of Small Droplets and the Melting Point of Solid NPs 365</p> <p>19.2.3 TheThermodynamic Stability andThermal Mobility of NPs 368</p> <p>19.2.4 Catalysts 368</p> <p>19.2.5 The Effect of Particle Size on Catalytic Activity 369</p> <p>19.2.6 Nanoparticles Compared to Microelectrodes 370</p> <p>19.2.7 The Need for High Surface Area 371</p> <p>19.3 Electrochemical Printing 372</p> <p>19.3.1 Electrochemical Printing Processes 373</p> <p>19.3.2 Nanoelectrochemistry Using Micro- and Nano-Electrodes/Pipettes 379</p> <p>Further Reading 384</p> <p><b>20 Energy Conversion and Storage 387</b></p> <p>20.1 Introduction 387</p> <p>20.2 Batteries 388</p> <p>20.2.1 Classes of Batteries 388</p> <p>20.2.2 TheTheoretical Limit of Energy per UnitWeight 390</p> <p>20.2.3 How is the Quality of a Battery Defined? 391</p> <p>20.2.4 Primary Batteries 392</p> <p>20.2.4.1 Why DoWe Need Primary Batteries? 392</p> <p>20.2.4.2 The Leclanché and the Alkaline Batteries 392</p> <p>20.2.4.3 The Li–Thionyl Chloride Battery 393</p> <p>20.2.4.4 The Lithium–Iodine Solid-State Battery 395</p> <p>20.2.5 Secondary Batteries 396</p> <p>20.2.5.1 Self-Discharge and Specific Energy 396</p> <p>20.2.5.2 Battery Stacks Versus Single Cells 396</p> <p>20.2.5.3 Some Common Types of Secondary Batteries 397</p> <p>20.2.5.4 The Li-ion Battery 402</p> <p>20.2.5.5 Metal–Air Batteries 408</p> <p>20.2.6 Batteries-Driven Electric Vehicles 409</p> <p>20.2.7 The Polarity of Batteries 410</p> <p>20.3 Fuel Cells 412</p> <p>20.3.1 The Specific Energy of Fuel Cells 412</p> <p>20.3.2 The Phosphoric Acid Fuel Cell (PAFC) 412</p> <p>20.3.3 The Direct Methanol Fuel Cell (DMFC) 415</p> <p>20.3.4 The Proton Exchange Membrane Fuel Cell (PEMFC) 418</p> <p>20.3.5 The Alkaline Fuel Cell (AFC) 420</p> <p>20.3.6 High-Temperature Fuel Cells 421</p> <p>20.3.6.1 The Solid Oxide Fuel Cell (SOFC) 421</p> <p>20.3.6.2 The Molten Carbonate Fuel Cell (MCFC) 422</p> <p>20.3.7 Porous Gas Diffusion Electrodes 423</p> <p>20.3.8 Fuel-Cell-Driven Vehicles 426</p> <p>20.3.9 Criticism of the Fuel Cells Technology 427</p> <p>20.4 Supercapacitors 428</p> <p>20.4.1 Electrostatic Considerations 428</p> <p>20.4.2 The Energy Stored in a Capacitor 429</p> <p>20.4.3 The Essence of Supercapacitors 430</p> <p>20.4.4 Advantages of Supercapacitors 432</p> <p>20.4.5 Barriers for Supercapacitors 435</p> <p>20.4.6 Applications of Supercapacitors 435</p> <p>20.5 Hydrogen Storage 436</p> <p>Further Reading 443</p> <p>Index 445</p> <p> </p>
Professor Noam Eliaz is a full professor, Director of the Biomaterials and Corrosion Laboratory, and the founder of the Department of Materials Science and Engineering at TAU. He earned a BSc degree in Materials Engineering, an MBA degree, and a PhD degree (direct track) in Materials Engineering, all cum laude from Ben-Gurion University of the Negev. Prior to joining TAU, he was a Fulbright and Rothschild Fellow at MIT. His research is interdisciplinary and includes electrodeposition of calcium phosphate coatings for implants, electrodeposition of special alloys for high-temperature applications, corrosion, and failure analysis. From 2005 to 2017 he was the Editor-in-Chief of the journal Corrosion Reviews, and currently he is an editorial board member of this journal as well as of Current Topics in Electrochemistry, Corrosion, and Materials Degradation, and Bioceramics Development and Applications. He is an elected member of The Israel Young Academy and was appointed to the Governing Board of The German-Israeli Foundation for Scientific Research and Development (GIF). He has won numerous awards, including NACE International's Herbert H. Uhlig Award (2010), Fellow Award (2012), and Technical Achievement Award (2014), as well as Fellow of The Japanese Society for the Promotion of Science (2005?2007) and the T.P. Hoar Award (2003).<br> Eliezer Gileadi has been a Professor of Chemistry at Tel-Aviv University (TAU) since 1966 (Emeritus since 2000). He obtained his M.Sc. at the Hebrew University in Jerusalem and his Ph.D. at the University of Ottawa, Canada. He has been a visiting professor and a lecturer at many institutes worldwide, including the University of Virginia, The University of Pennsylvania, Case Western Reserve University, The Johns Hopkins University, University of Ottawa, etc. He is a Fellow of the Royal Society of Canada, the Electrochemical Society, the American Association for the Advancement of Science, and the International Society for Electrochemistry. He received from the Electrochemical Society the prestigious Olin-Palladium Award and the Henry B. Linford Award for Distinguished Teaching. He taught this subject for 40 years and consulted to industry.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
128,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry of Ionic Materials
Physical Chemistry of Ionic Materials
von: Joachim Maier
PDF ebook
88,99 €