Details

Physical Chemistry of Macromolecules


Physical Chemistry of Macromolecules

Basic Principles and Issues
2. Aufl.

von: S. F. Sun

133,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.03.2004
ISBN/EAN: 9780471623564
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Integrating coverage of polymers and biological macromolecules into a single text, <i>Physical Chemistry of Macromolecules</i> is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. <p>This book includes end of chapter problems and references, and also:</p> <ul> <li>Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry.</li> <li>Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.</li> </ul>
<p>Preface to the Second Edition xv</p> <p>Preface to the First Edition xix</p> <p><b>1 Introduction 1</b></p> <p>1.1 Colloids 1</p> <p>1.2 Macromolecules 3</p> <p>1.2.1 Synthetic Polymers 4</p> <p>1.2.2 Biological Polymers 7</p> <p>1.3 Macromolecular Science 17</p> <p>References 17</p> <p><b>2 Syntheses of Macromolecular Compounds 19</b></p> <p>2.1 Radical Polymerization 19</p> <p>2.1.1 Complications 21</p> <p>2.1.2 Methods of Free-Radical Polymerization 23</p> <p>2.1.3 Some Well-Known Overall Reactions of Addition Polymers 23</p> <p>2.2 Ionic Polymerization 25</p> <p>2.2.1 Anionic Polymerization 25</p> <p>2.2.2 Cationic Polymerization 27</p> <p>2.2.3 Living Polymers 27</p> <p>2.3 Coordination Polymerization 30</p> <p>2.4 Stepwise Polymerization 32</p> <p>2.5 Kinetics of the Syntheses of Polymers 33</p> <p>2.5.1 Condensation Reactions 34</p> <p>2.5.2 Chain Reactions 35</p> <p>2.6 Polypeptide Synthesis 40</p> <p>2.6.1 Synthesis of Insulin 43</p> <p>2.6.2 Synthesis of Ribonucleus 48</p> <p>2.7 DNA Synthesis 48</p> <p>References 50</p> <p>Problems 50</p> <p><b>3 Distribution of Molecular Weight 52</b></p> <p>3.1 Review of Mathematical Statistics 53</p> <p>3.1.1 Binomial Distribution 53</p> <p>3.1.2 Poisson Distribution 54</p> <p>3.1.3 Gaussian Distribution 55</p> <p>3.2 One-Parameter Equation 56</p> <p>3.2.1 Condensation Polymers 57</p> <p>3.2.2 Addition Polymers 58</p> <p>3.3 Two-Parameter Equations 59</p> <p>3.3.1 Normal Distribution 59</p> <p>3.3.2 Logarithm Normal Distribution 60</p> <p>3.4 Types of Molecular Weight 61</p> <p>3.5 Experimental Methods for Determining Molecular Weight and Molecular Weight Distribution 64</p> <p>References 65</p> <p>Problems 65</p> <p><b>4 Macromolecular Thermodynamics 67</b></p> <p>4.1 Review of Thermodynamics 68</p> <p>4.2 S of Mixing: Flory Theory 71</p> <p>4.3 H of Mixing 75</p> <p>4.3.1 Cohesive Energy Density 76</p> <p>4.3.2 Contact Energy (First-Neighbor Interaction or Energy Due to Contact) 79</p> <p>4.4 G of Mixing 81</p> <p>4.5 Partial Molar Quantities 81</p> <p>4.5.1 Partial Specific Volume 82</p> <p>4.5.2 Chemical Potential 83</p> <p>4.6 Thermodynamics of Dilute Polymer Solutions 84</p> <p>4.6.1 Vapor Pressure 87</p> <p>4.6.2 Phase Equilibrium 89</p> <p>Appendix: Thermodynamics and Critical Phenomena 91</p> <p>References 92</p> <p>Problems 93</p> <p><b>5 Chain Configurations 96</b></p> <p>5.1 Preliminary Descriptions of a Polymer Chain 97</p> <p>5.2 Random Walk and the Markov Process 98</p> <p>5.2.1 Random Walk 99</p> <p>5.2.2 Markov Chain 101</p> <p>5.3 Random-Flight Chains 103</p> <p>5.4 Wormlike Chains 105</p> <p>5.5 Flory’s Mean-Field Theory 106</p> <p>5.6 Perturbation Theory 107</p> <p>5.6.1 First-Order Perturbation Theory 108</p> <p>5.6.2 Cluster Expansion Method 108</p> <p>5.7 Chain Crossover and Chain Entanglement 109</p> <p>5.7.1 Concentration Effect 109</p> <p>5.7.2 Temperature Effect 114</p> <p>5.7.3 Tube Theory (Reptation Theory) 116</p> <p>5.7.4 Images of Individual Polymer Chains 118</p> <p>5.8 Scaling and Universality 119</p> <p>Appendix A Scaling Concepts 120</p> <p>Appendix B Correlation Function 121</p> <p>References 123</p> <p>Problems 124</p> <p><b>6 Liquid Crystals 127</b></p> <p>6.1 Mesogens 128</p> <p>6.2 Polymeric Liquid Crystals 130</p> <p>6.2.1 Low-Molecular Weight Liquid Crystals 131</p> <p>6.2.2 Main-Chain Liquid-Crystalline Polymers 132</p> <p>6.2.3 Side-Chain Liquid-Crystalline Polymers 132</p> <p>6.2.4 Segmented-Chain Liquid-Crystalline Polymers 133</p> <p>6.3 Shapes of Mesogens 133</p> <p>6.4 Liquid-Crystal Phases 134</p> <p>6.4.1 Mesophases in General 134</p> <p>6.4.2 Nematic Phase 135</p> <p>6.4.3 Smectic Phase 135</p> <p>6.4.3.1 Smectic A and C 136</p> <p>6.4.4 Compounds Representing Some Mesophases 136</p> <p>6.4.5 Shape and Phase 137</p> <p>6.4.6 Decreasing Order and H of Phase Transition 138</p> <p>6.5 Thermotropic and Lyotropic Liquid Crystals 138</p> <p>6.6 Kerr Effect 140</p> <p>6.7 Theories of Liquid-Crystalline Ordering 141</p> <p>6.7.1 Rigid-Rod Model 141</p> <p>6.7.2 Lattice Model 142</p> <p>6.7.3 De Genne’s Fluctuation Theory 144</p> <p>6.8 Current Industrial Applications of Liquid Crystals 145</p> <p>6.8.1 Liquid Crystals Displays 146</p> <p>6.8.2 Electronic Devices 147</p> <p>References 149</p> <p><b>7 Rubber Elasticity 150</b></p> <p>7.1 Rubber and Rubberlike Materials 150</p> <p>7.2 Network Structure 151</p> <p>7.3 Natural Rubber and Synthetic Rubber 152</p> <p>7.4 Thermodynamics of Rubber 154</p> <p>7.5 Statistical Theory of Rubber Elasticity 158</p> <p>7.6 Gels 162</p> <p>References 163</p> <p>Problems 164</p> <p><b>8 Viscosity and Viscoelasticity 165</b></p> <p>8.1 Viscosity 165</p> <p>8.1.1 Capillary Viscometers 166</p> <p>8.1.2 Intrinsic Viscosity 170</p> <p>8.1.3 Treatment of Intrinsic Viscosity Data 172</p> <p>8.1.4 Stokes’ Law 176</p> <p>8.1.5 Theories in Relation to Intrinsic Viscosity of Flexible Chains 176</p> <p>8.1.6 Chain Entanglement 179</p> <p>8.1.7 Biological Polymers (Rigid Polymers Inflexible Chains) 181</p> <p>8.2 Viscoelasticity 184</p> <p>8.2.1 Rouse Theory 187</p> <p>8.2.2 Zimm Theory 190</p> <p>References 192</p> <p>Problems 193</p> <p><b>9 Osmotic Pressure 198</b></p> <p>9.1 Osmometers 199</p> <p>9.2 Determination of Molecular Weight and Second Virial Coefficient 199</p> <p>9.3 Theories of Osmotic Pressure and Osmotic Second Virial Coefficient 202</p> <p>9.3.1 McMillan–Mayer Theory 203</p> <p>9.3.2 Flory Theory 204</p> <p>9.3.3 Flory–Krigbaum Theory 205</p> <p>9.3.4 Kurata–Yamakawa Theory 207</p> <p>9.3.5 des Cloizeaux–de Gennes Scaling Theory 209</p> <p>9.3.6 Scatchard’s Equation for Macro Ions 213</p> <p>Appendix A Ensembles 215</p> <p>Appendix B Partition Functions 215</p> <p>Appendix C Mean-Field Theory and Renormalization Group Theory 216</p> <p>Appendix D Lagrangian Theory 217</p> <p>Appendix E Green’s Function 217</p> <p>References 218</p> <p>Problems 218</p> <p><b>10 Diffusion 223</b></p> <p>10.1 Translational Diffusion 223</p> <p>10.1.1 Fick’s First and Second Laws 223</p> <p>10.1.2 Solution to Continuity Equation 224</p> <p>10.2 Physical Interpretation of Diffusion: Einstein’s Equation of Diffusion 226</p> <p>10.3 Size Shape and Molecular Weight Determinations 229</p> <p>10.3.1 Size 229</p> <p>10.3.2 Shape 230</p> <p>10.3.3 Molecular Weight 231</p> <p>10.4 Concentration Dependence of Diffusion Coefficient 231</p> <p>10.5 Scaling Relation for Translational Diffusion Coefficient 233</p> <p>10.6 Measurements of Translational Diffusion Coefficient 234</p> <p>10.6.1 Measurement Based on Fick’s First Law 234</p> <p>10.6.2 Measurement Based on Fick’s Second Law 235</p> <p>10.7 Rotational Diffusion 237</p> <p>10.7.1 Flow Birefringence 239</p> <p>10.7.2 Fluorescence Depolarization 239</p> <p>References 240</p> <p>Problems 240</p> <p><b>11 Sedimentation 243</b></p> <p>11.1 Apparatus 244</p> <p>11.2 Sedimentation Velocity 246</p> <p>11.2.1 Measurement of Sedimentation Coefficients: Moving-Boundary Method 246</p> <p>11.2.2 Svedberg Equation 249</p> <p>11.2.3 Application of Sedimentation Coefficient 249</p> <p>11.3 Sedimentation Equilibrium 250</p> <p>11.3.1 Archibald Method 251</p> <p>11.3.2 Van Holde–Baldwin (Low-Speed) Method 254</p> <p>11.3.3 Yphantis (High-Speed) Method 256</p> <p>11.3.4 Absorption System 258</p> <p>11.4 Density Gradient Sedimentation Equilibrium 259</p> <p>11.5 Scaling Theory 260</p> <p>References 262</p> <p>Problems 263</p> <p><b>12 Optical Rotatory Dispersion and Circular Dichroism 267</b></p> <p>12.1 Polarized Light 267</p> <p>12.2 Optical Rotatory Dispersion 267</p> <p>12.3 Circular Dichroism 272</p> <p>12.4 Cotton Effect 275</p> <p>12.5 Correlation Between ORD and CD 277</p> <p>12.6 Comparison of ORD and CD 280</p> <p>References 281</p> <p>Problems 281</p> <p><b>13 High-Performance Liquid Chromatography and Electrophoresis 284</b></p> <p>13.1 High-Performance Liquid Chromatography 284</p> <p>13.1.1 Chromatographic Terms and Parameters 284</p> <p>13.1.2 Theory of Chromatography 289</p> <p>13.1.3 Types of HPLC 291</p> <p>13.2 Electrophoresis 300</p> <p>13.2.1 Basic Theory 300</p> <p>13.2.2 General Techniques of Modern Electrophoresis 305</p> <p>13.2.3 Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis 307</p> <p>13.2.4 Southern Blot Northern Blot and Western Blot 309</p> <p>13.2.5 Sequencing DNA Fragments 310</p> <p>13.2.6 Isoelectric Focusing and Isotachophoresis 310</p> <p>13.3 Field-Flow Fractionation 314</p> <p>References 317</p> <p>Problems 318</p> <p><b>14 Light Scattering 320</b></p> <p>14.1 Rayleigh Scattering 320</p> <p>14.2 Fluctuation Theory (Debye) 324</p> <p>14.3 Determination of Molecular Weight and Molecular Interaction 329</p> <p>14.3.1 Two-Component Systems 329</p> <p>14.3.2 Multicomponent Systems 329</p> <p>14.3.3 Copolymers 331</p> <p>14.3.4 Correction of Anisotropy and Deporalization of Scattered Light 333</p> <p>14.4 Internal Interference 333</p> <p>14.5 Determination of Molecular Weight and Radius of Gyration of the Zimm Plot 337</p> <p>Appendix Experimental Techniques of the Zimm Plot 341</p> <p>References 345</p> <p>Problems 346</p> <p><b>15 Fourier Series 348</b></p> <p>15.1 Preliminaries 348</p> <p>15.2 Fourier Series 350</p> <p>15.2.1 Basic Fourier Series 350</p> <p>15.2.2 Fourier Sine Series 352</p> <p>15.2.3 Fourier Cosine Series 352</p> <p>15.2.4 Complex Fourier Series 353</p> <p>15.2.5 Other Forms of Fourier Series 353</p> <p>15.3 Conversion of Infinite Series into Integrals 354</p> <p>15.4 Fourier Integrals 354</p> <p>15.5 Fourier Transforms 356</p> <p>15.5.1 Fourier Transform Pairs 356</p> <p>15.6 Convolution 359</p> <p>15.6.1 Definition 359</p> <p>15.6.2 Convolution Theorem 361</p> <p>15.6.3 Convolution and Fourier Theory: Power Theorem 361</p> <p>15.7 Extension of Fourier Series and Fourier Transform 362</p> <p>15.7.1 Lorentz Line Shape 362</p> <p>15.7.2 Correlation Function 363</p> <p>15.8 Discrete Fourier Transform 364</p> <p>15.8.1 Discrete and Inverse Discrete Fourier Transform 364</p> <p>15.8.2 Application of DFT 365</p> <p>15.8.3 Fast Fourier Transform 366</p> <p>Appendix 367</p> <p>References 368</p> <p>Problems 369</p> <p><b>16 Small-Angle X-Ray Scattering Neutron Scattering and Laser Light Scattering 371</b></p> <p>16.1 Small-Angle X-ray Scattering 371</p> <p>16.1.1 Apparatus 372</p> <p>16.1.2 Guinier Plot 373</p> <p>16.1.3 Correlation Function 375</p> <p>16.1.4 On Size and Shape of Proteins 377</p> <p>16.2 Small-Angle Neutron Scattering 381</p> <p>16.2.1 Six Types of Neutron Scattering 381</p> <p>16.2.2 Theory 382</p> <p>16.2.3 Dynamics of a Polymer Solution 383</p> <p>16.2.4 Coherently Elastic Neutron Scattering 384</p> <p>16.2.5 Comparison of Small-Angle Neutron Scattering with Light Scattering 384</p> <p>16.2.6 Contrast Factor 386</p> <p>16.2.7 Lorentzian Shape 388</p> <p>16.2.8 Neutron Spectroscopy 388</p> <p>16.3 Laser Light Scattering 389</p> <p>16.3.1 Laser Light-Scattering Experiment 389</p> <p>16.3.2 Autocorrelation and Power Spectrum 390</p> <p>16.3.3 Measurement of Diffusion Coefficient in General 391</p> <p>16.3.4 Application to Study of Polymers in Semidilute Solutions 393</p> <p>16.3.4.1 Measurement of Lag Times 393</p> <p>16.3.4.2 Forced Rayleigh Scattering 394</p> <p>16.3.4.3 Linewidth Analysis 394</p> <p>References 395</p> <p>Problems 396</p> <p><b>17 Electronic and Infrared Spectroscopy 399</b></p> <p>17.1 Ultraviolet (and Visible) Absorption Spectra 400</p> <p>17.1.1 Lambert–Beer Law 402</p> <p>17.1.2 Terminology 403</p> <p>17.1.3 Synthetic Polymers 405</p> <p>17.1.4 Proteins 406</p> <p>17.1.5 Nucleic Acids 409</p> <p>17.2 Fluorescence Spectroscopy 412</p> <p>17.2.1 Fluorescence Phenomena 412</p> <p>17.2.2 Emission and Excitation Spectra 413</p> <p>17.2.3 Quenching 413</p> <p>17.2.4 Energy Transfer 416</p> <p>17.2.5 Polarization and Depolarization 418</p> <p>17.3 Infrared Spectroscopy 420</p> <p>17.3.1 Basic Theory 420</p> <p>17.3.2 Absorption Bands: Stretching and Bending 421</p> <p>17.3.3 Infrared Spectroscopy of Synthetic Polymers 424</p> <p>17.3.4 Biological Polymers 427</p> <p>17.3.5 Fourier Transform Infrared Spectroscopy 428</p> <p>References 430</p> <p>Problems 432</p> <p><b>18 Protein Molecules 436</b></p> <p>18.1 Protein Sequence and Structure 436</p> <p>18.1.1 Sequence 436</p> <p>18.1.2 Secondary Structure 437</p> <p>18.1.2.1 a-Helix and b-Sheet 437</p> <p>18.1.2.2 Classification of Proteins 439</p> <p>18.1.2.3 Torsion Angles 440</p> <p>18.1.3 Tertiary Structure 441</p> <p>18.1.4 Quarternary Structure 441</p> <p>18.2 Protein Structure Representations 441</p> <p>18.2.1 Representation Symbols 441</p> <p>18.2.2 Representations of Whole Molecule 442</p> <p>18.3 Protein Folding and Refolding 444</p> <p>18.3.1 Computer Simulation 445</p> <p>18.3.2 Homolog Modeling 447</p> <p>18.3.3 De Novo Prediction 447</p> <p>18.4 Protein Misfolding 448</p> <p>18.4.1 Biological Factor: Chaperones 448</p> <p>18.4.2 Chemical Factor: Intra- and Intermolecular Interactions 449</p> <p>18.4.3 Brain Diseases 450</p> <p>18.5 Genomics Proteomics and Bioinformatics 451</p> <p>18.6 Ribosomes: Site and Function of Protein Synthesis 452</p> <p>References 454</p> <p><b>19 Nuclear Magnetic Resonance 455</b></p> <p>19.1 General Principles 455</p> <p>19.1.1 Magnetic Field and Magnetic Moment 455</p> <p>19.1.2 Magnetic Properties of Nuclei 456</p> <p>19.1.3 Resonance 458</p> <p>19.1.4 Nuclear Magnetic Resonance 460</p> <p>19.2 Chemical Shift (d) and Spin–Spin Coupling Constant (J) 461</p> <p>19.3 Relaxation Processes 466</p> <p>19.3.1 Spin–Lattice Relaxation and Spin–Spin Relaxation 467</p> <p>19.3.2 Nuclear Quadrupole Relaxation and Overhauser Effect 469</p> <p>19.4 NMR Spectroscopy 470</p> <p>19.4.1 Pulse Fourier Transform Method 471</p> <p>19.4.1.1 Rotating Frame of Reference 471</p> <p>19.4.1.2 The 90 Pulse 471</p> <p>19.4.2 One-Dimensional NMR 472</p> <p>19.4.3 Two-Dimensional NMR 473</p> <p>19.5 Magnetic Resonance Imaging 475</p> <p>19.6 NMR Spectra of Macromolecules 477</p> <p>19.6.1 Poly(methyl methacrylate) 477</p> <p>19.6.2 Polypropylene 481</p> <p>19.6.3 Deuterium NMR Spectra of Chain Mobility in Polyethylene 482</p> <p>19.6.4 Two-Dimensional NMR Spectra of Poly-g-benzyl-L-glutamate 485</p> <p>19.7 Advances in NMR Since 1994 487</p> <p>19.7.1 Apparatus 487</p> <p>19.7.2 Techniques 487</p> <p>19.7.2.1 Computer-Aided Experiments 487</p> <p>19.7.2.2 Modeling of Chemical Shift 488</p> <p>19.7.2.3 Protein Structure Determination 489</p> <p>19.7.2.4 Increasing Molecular Weight of Proteins for NMR study 491</p> <p>19.8 Two Examples of Protein NMR 491</p> <p>19.8.1 A Membrane Protein 493</p> <p>19.8.2 A Brain Protein: Prion 494</p> <p>References 494</p> <p>Problems 495</p> <p><b>20 X-Ray Crystallography 497</b></p> <p>20.1 X-Ray Diffraction 497</p> <p>20.2 Crystals 498</p> <p>20.2.1 Miller Indices, <i>hkl</i> 498</p> <p>20.2.2 Unit Cells or Crystal Systems 502</p> <p>20.2.3 Crystal Drawing 503</p> <p>20.3 Symmetry in Crystals 504</p> <p>20.3.1 Bravais Lattices 505</p> <p>20.3.2 Point Group and Space Group 506</p> <p>20.3.2.1 Point Groups 507</p> <p>20.3.2.2 Interpretation of Stereogram 509</p> <p>20.3.2.3 Space Groups 512</p> <p>20.4 Fourier Synthesis 515</p> <p>20.4.1 Atomic Scattering Factor 515</p> <p>20.4.2 Structure Factor 515</p> <p>20.4.3 Fourier Synthesis of Electron Density 516</p> <p>20.5 Phase Problem 517</p> <p>20.5.1 Patterson Synthesis 517</p> <p>20.5.2 Direct Method (Karle–Hauptmann Approach) 518</p> <p>20.6 Refinement 519</p> <p>20.7 Crystal Structure of Macromolecules 520</p> <p>20.7.1 Synthetic Polymers 520</p> <p>20.7.2 Proteins 523</p> <p>20.7.3 DNA 523</p> <p>20.8 Advances in X-Ray Crystallography Since 1994 525</p> <p>20.8.1 X-Ray Sources 525</p> <p>20.8.2 New Instruments 526</p> <p>20.8.3 Structures of Proteins 526</p> <p>20.8.3.1 Comparison of X-Ray Crystallography with NMR Spectroscopy 527</p> <p>20.8.4 Protein Examples: Polymerse and Anthrax 528</p> <p>Appendix Neutron Diffraction 530</p> <p>References 532</p> <p>Problems 533</p> <p>Author Index 535</p> <p>Subject Index 543</p>
"...a useful addition to the libraries of scientists, researchers, and engineers working in this field...could also serve as an undergraduate text in a polymers or chemistry program." (<i>Materials and Manufacturing Processes</i>, August 2006) <p>"...a modern overview of polymer physical chemistry...a valuable addition to any polymer scientist's library, and it is hard to imagine anyone not getting a lot of useful information and inspiration from reading it." (<i>Polymer News</i>)</p>
<b>SIAO F. SUN</b> is Professor Emeritus of Chemistry at St. John's University in Jamaica, New York.
<b>Integrated coverage of polymers and biological macromolecules, thoroughly revised and expanded</b> <p>Since the publication of the first edition of <i>Physical Chemistry of Macromolecules</i>, new developments in the field have greatly advanced the study of large molecules. These advancements include the technical improvement of measuring instruments as well as the involvement of new disciplines such as materials science and structural biology.</p> <p>The <i>Second Edition</i> of <i>Physical Chemistry of Macromolecules</i> takes these changes into account while continuing the uniquely integrated approach to polymers and biological macromolecules taken by the original text. It explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations. New and thoroughly revised chapters cover topics including:</p> <ul> <li>Liquid crystals</li> <li>Rubber elasticity</li> <li>Fourier series</li> <li>Protein molecules</li> <li>Nuclear magnetic resonance</li> <li>X-ray crystallography</li> </ul> <p>This comprehensive resource features end-of-chapter problems and references. In providing an integrated treatment of polymer chemistry and biophysical chemistry, the book reflects the increasingly interdisciplinary nature of this subject. Advanced students and professionals in chemistry, pharmaceuticals, and biochemistry will all find <i>Physical Chemistry of Macromolecules, Second Edition</i> to be a timely, carefully structured presentation of the material.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €