Details

Physical Chemistry


Physical Chemistry

How Chemistry Works
1. Aufl.

von: Kurt W. Kolasinski

63,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.10.2016
ISBN/EAN: 9781118751206
Sprache: englisch
Anzahl Seiten: 752

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Much of chemistry is motivated by asking 'How'? <i>How do I make a primary alcohol? React a Grignard reagent with formaldehyde</i>. Physical chemistry is motivated by asking 'Why'? <i>The Grignard reagent and formaldehyde follow a molecular dance known as a reaction mechanism in which stronger bonds are made at the expense of weaker bonds</i>. <b>If you are interested in asking 'why' and not just 'how', then you need to understand physical chemistry.</b></p> <p><i>Physical Chemistry: How Chemistry Works</i> takes a fresh approach to teaching in physical chemistry. This modern textbook is designed to excite and engage undergraduate chemistry students and prepare them for how they will employ physical chemistry in real life. The student-friendly approach and practical, contemporary examples facilitate an understanding of the physical chemical aspects of any system, allowing students of inorganic chemistry, organic chemistry, analytical chemistry and biochemistry to be fluent in the essentials of physical chemistry in order to understand synthesis, intermolecular interactions and materials properties. For students who are deeply interested in the subject of physical chemistry, the textbook facilitates further study by connecting them to the frontiers of research.</p> <ul> <li>Provides students with the physical and mathematical machinery to understand the physical chemical aspects of any system.</li> <li>Integrates regular examples drawn from the literature, from contemporary issues and research, to engage students with relevant and illustrative details.</li> <li>Important topics are introduced and returned to in later chapters: key concepts are reinforced and discussed in more depth as students acquire more tools.</li> <li>Chapters begin with a preview of important concepts and conclude with a summary of important equations.</li> <li>Each chapter includes worked examples and exercises: discussion questions, simple equation manipulation questions, and problem-solving exercises.</li> <li>Accompanied by supplementary online material: worked examples for students and a solutions manual for instructors.</li> <li>Fifteen supporting videos from the author presenting such topics as Entropy & Direction of Change; Rate Laws; Sequestration; Electrochemistry; etc.</li> <li>Written by an experienced instructor, researcher and author in physical chemistry, with a voice and perspective that is pedagogical and engaging.</li> </ul>
<p>Preface xv</p> <p>About the companion website xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Atoms and molecules 1</p> <p>1.2 Phases 2</p> <p>1.3 Energy 3</p> <p>1.4 Chemical reactions 4</p> <p>1.5 Problem solving 5</p> <p>1.6 Some conventions 7</p> <p>Exercises 11</p> <p>Further reading 14</p> <p><b>2 Ideal gases 15</b></p> <p>2.1 Ideal gas equation of state 16</p> <p>2.2 Molecular degrees of freedom 18</p> <p>2.3 Translational energy: Distribution and relation to pressure 21</p> <p>2.4 Maxwell distribution of molecular speeds 23</p> <p>2.5 Principle of equipartition of energy 24</p> <p>2.6 Temperature and the zeroth law of thermodynamics 25</p> <p>2.7 Mixtures of gases 27</p> <p>2.8 Molecular collisions 27</p> <p>Exercises 29</p> <p>Further reading 30</p> <p><b>3 Non-ideal gases and intermolecular interactions 31</b></p> <p>3.1 Non-ideal behavior 31</p> <p>3.2 Interactions of matter with matter 32</p> <p>3.3 Intermolecular interactions 34</p> <p>3.4 Real gases 39</p> <p>3.5 Corresponding states 42</p> <p>3.6 Supercritical fluids 43</p> <p>Exercises 43</p> <p>Further reading 44</p> <p><b>4 Liquids, liquid crystals, and ionic liquids 45</b></p> <p>4.1 Liquid formation 45</p> <p>4.2 Properties of liquids 45</p> <p>4.3 Intermolecular interaction in liquids 47</p> <p>4.4 Structure of liquids 50</p> <p>4.5 Internal energy and equation of state of a rigid sphere liquid 52</p> <p>4.6 Concentration units 53</p> <p>4.7 Diffusion 55</p> <p>4.8 Viscosity 57</p> <p>4.9 Migration 59</p> <p>4.10 Interface formation 60</p> <p>4.11 Liquid crystals 62</p> <p>4.12 Ionic liquids 64</p> <p>Exercises 66</p> <p>Further reading 67</p> <p><b>5 Solids, nanoparticles, and interfaces 68</b></p> <p>5.1 Solid formation 68</p> <p>5.2 Electronic structure of solids 70</p> <p>5.3 Geometrical structure of solids 72</p> <p>5.4 Interface formation 76</p> <p>5.5 Glass formation 78</p> <p>5.6 Clusters and nanoparticles 78</p> <p>5.7 The carbon family: Diamond, graphite, graphene, fullerenes, and carbon nanotubes 80</p> <p>5.8 Porous solids 83</p> <p>5.9 Polymers and macromolecules 84</p> <p>Exercises 86</p> <p>Endnotes 86</p> <p>Further reading 86</p> <p><b>6 Statistical mechanics 87</b></p> <p>6.1 The initial state of the universe 88</p> <p>6.2 Microstates and macrostates of molecules 89</p> <p>6.3 The connection of entropy to microstates 91</p> <p>6.4 The constant 𝛼: Introducing the partition function 93</p> <p>6.5 Using the partition function to derive thermodynamic functions 94</p> <p>6.6 Distribution functions for gases 96</p> <p>6.7 Quantum statistics for particle distributions 98</p> <p>6.8 The Maxwell–Boltzmann speed distribution 102</p> <p>6.9 Derivation of the ideal gas law 103</p> <p>6.10 Deriving the Sackur–Tetrode equation for entropy of a monatomic gas 104</p> <p>6.11 The partition function of a diatomic molecule 106</p> <p>6.12 Contributions of each degree of freedom to thermodynamic functions 106</p> <p>6.13 The total partition function and thermodynamic functions 111</p> <p>6.14 Polyatomic molecules 113</p> <p>Exercises 115</p> <p>Endnotes 116</p> <p>Further reading 116</p> <p><b>7 First law of thermodynamics 117</b></p> <p>7.1 Some definitions and fundamental concepts in thermodynamics 118</p> <p>7.2 Laws of thermodynamics 118</p> <p>7.3 Internal energy and the first law 119</p> <p>7.4 Work 121</p> <p>7.5 Intensive and extensive variables 123</p> <p>7.6 Heat 124</p> <p>7.7 Non-ideal behavior changes the work 125</p> <p>7.8 Heat capacity 126</p> <p>7.9 Temperature dependence of C<i><sub>p</sub> </i>127</p> <p>7.10 Internal energy change at constant volume 129</p> <p>7.11 Enthalpy 130</p> <p>7.12 Relationship between C<i><sub>V</sub></i> and C<i><sub>p</sub></i> and partial differentials 131</p> <p>7.13 Reversible adiabatic expansion/compression 133</p> <p>Exercises 136</p> <p>Endnotes 138</p> <p>Further reading 138</p> <p><b>8 Second law of thermodynamics 139</b></p> <p>8.1 The second law of thermodynamics 140</p> <p>8.2 Thermodynamics of a hurricane 141</p> <p>8.3 Heat engines, refrigeration, and heat pumps 145</p> <p>8.4 Definition of entropy 148</p> <p>8.5 Calculating changes in entropy 150</p> <p>8.6 Maxwell’s relations 152</p> <p>8.7 Calculating the natural direction of change 154</p> <p>Exercises 157</p> <p>Endnotes 159</p> <p>Further reading 159</p> <p><b>9 Third law of thermodynamics and temperature dependence of heat capacity, enthalpy and entropy 160</b></p> <p>9.1 When and why does a system change? 160</p> <p>9.2 Natural variables of internal energy 161</p> <p>9.3 Helmholtz and Gibbs energies 162</p> <p>9.4 Standard molar Gibbs energies 163</p> <p>9.5 Properties of the Gibbs energy 164</p> <p>9.6 The temperature dependence of <b>Δ</b><sub>r</sub><i>C<sub>p</sub></i> and <i>H</i> 168</p> <p>9.7 Third law of thermodynamics 170</p> <p>9.8 The unattainability of absolute zero 171</p> <p>9.9 Absolute entropies 172</p> <p>9.10 Entropy changes in chemical reactions 173</p> <p>9.11 Calculating <b>Δ</b><sub>r</sub><i>S</i><sup>◦</sup> at any temperature 175</p> <p>Exercises 177</p> <p>Further reading 180</p> <p><b>10 Thermochemistry: The role of heat in chemical and physical changes 181</b></p> <p>10.1 Stoichiometry and extent of reaction 181</p> <p>10.2 Standard enthalpy change 182</p> <p>10.3 Calorimetry 184</p> <p>10.4 Phase transitions 187</p> <p>10.5 Bond dissociation and atomization 190</p> <p>10.6 Solution 191</p> <p>10.7 Enthalpy of formation 192</p> <p>10.8 Hess’s law 192</p> <p>10.9 Reaction enthalpy from enthalpies of formation 193</p> <p>10.10 Calculating enthalpy of reaction from enthalpies of combustion 194</p> <p>10.11 The magnitude of reaction enthalpy 195</p> <p>Exercises 196</p> <p>Further reading 200</p> <p><b>11 Chemical equilibrium 201</b></p> <p>11.1 Chemical potential and Gibbs energy of a reaction mixture 201</p> <p>11.2 The Gibbs energy and equilibrium composition 202</p> <p>11.3 The response of equilibria to change 204</p> <p>11.4 Equilibrium constants and associated calculations 209</p> <p>11.5 Acid–base equilibria 212</p> <p>11.6 Dissolution and precipitation of salts 216</p> <p>11.7 Formation constants of complexes 219</p> <p>11.8 Thermodynamics of self-assembly 222</p> <p>Exercises 224</p> <p>Endnote 228</p> <p>Further reading 228</p> <p><b>12 Phase stability and phase transitions 229</b></p> <p>12.1 Phase diagrams and the relative stability of solids, liquids, and gases 229</p> <p>12.2 What determines relative phase stability? 232</p> <p>12.3 The <i>p–T</i> phase diagram 234</p> <p>12.4 The Gibbs phase rule 237</p> <p>12.5 Theoretical basis for the <i>p–T</i> phase diagram 238</p> <p>12.6 Clausius–Clapeyron equation 240</p> <p>12.7 Surface tension 242</p> <p>12.8 Nucleation 246</p> <p>12.9 Construction of a liquid–vapor phase diagram at constant pressure 250</p> <p>12.10 Polymers: Phase separation and the glass transition 252</p> <p>Exercises 254</p> <p>Endnotes 255</p> <p>Further reading 256</p> <p><b>13 Solutions and mixtures: Nonelectrolytes 257</b></p> <p>13.1 Ideal solution and the standard state 258</p> <p>13.2 Partial molar volume 258</p> <p>13.3 Partial molar Gibbs energy = chemical potential 259</p> <p>13.4 The chemical potential of a mixture and <b>Δ</b><sub>mix</sub>G 261</p> <p>13.5 Activity 263</p> <p>13.6 Measurement of activity 264</p> <p>13.7 Classes of solutions and their properties 269</p> <p>13.8 Colligative properties 273</p> <p>13.9 Solubility of polymers 277</p> <p>13.10 Supercritical CO<sub>2</sub> 279</p> <p>Exercises 281</p> <p>Endnote 282</p> <p>Further reading 282</p> <p><b>14 Solutions of electrolytes 283</b></p> <p>14.1 Why salts dissolve 283</p> <p>14.2 Ions in solution 284</p> <p>14.3 The thermodynamic properties of ions in solution 287</p> <p>14.4 The activity of ions in solution 289</p> <p>14.5 Debye–Huckel theory 290</p> <p>14.6 Use of activities in equilibrium calculations 292</p> <p>14.7 Charge transport 295</p> <p>Exercises 298</p> <p>Further reading 299</p> <p><b>15 Electrochemistry: The chemistry of free charge exchange 300</b></p> <p>15.1 Introduction to electrochemistry 301</p> <p>15.2 The electrochemical potential 306</p> <p>15.3 Electrochemical cells 310</p> <p>15.4 Potential difference of an electrochemical cell 312</p> <p>15.5 Surface charge and potential 318</p> <p>15.6 Relating work functions to the electrochemical series 319</p> <p>15.7 Applications of standard potentials 321</p> <p>15.8 Biological oxidation and proton-coupled electron transfer 326</p> <p>Exercises 329</p> <p>Endnotes 331</p> <p>Further reading 332</p> <p><b>16 Empirical chemical kinetics 333</b></p> <p>16.1 What is chemical kinetics? 333</p> <p>16.2 Rates of reaction and rate equations 335</p> <p>16.3 Elementary versus composite reactions 336</p> <p>16.4 Kinetics and thermodynamics 337</p> <p>16.5 Kinetics of specific orders 338</p> <p>16.6 Reaction rate determination 345</p> <p>16.7 Methods of determining reaction order 346</p> <p>16.8 Reversible reactions and the connection of rate constants to equilibrium constants 348</p> <p>16.9 Temperature dependence of rates and the rate constant 350</p> <p>16.10 Microscopic reversibility and detailed balance 353</p> <p>16.11 Rate-determining step (RDS) 354</p> <p>Exercises 355</p> <p>Endnotes 359</p> <p>Further reading 359</p> <p><b>17 Reaction dynamics I: Mechanisms and rates 360</b></p> <p>17.1 Linking empirical kinetics to reaction dynamics 360</p> <p>17.2 Hard-sphere collision theory 361</p> <p>17.3 Activation energy and the transition state 364</p> <p>17.4 Transition-state theory (TST) 366</p> <p>17.5 Composite reactions and mechanisms 368</p> <p>17.6 The rate of unimolecular reactions 372</p> <p>17.7 Desorption kinetics 374</p> <p>17.8 Langmuir (direct) adsorption 378</p> <p>17.9 Precursor-mediated adsorption 380</p> <p>17.10 Adsorption isotherms 381</p> <p>17.11 Surmounting activation barriers 382</p> <p>Exercises 386</p> <p>Endnotes 389</p> <p>Further reading 390</p> <p><b>18 Reaction dynamics II: Catalysis, photochemistry and charge transfer 391</b></p> <p>18.1 Catalysis 392</p> <p>18.2 Heterogeneous catalysis 393</p> <p>18.3 Acid–base catalysis 402</p> <p>18.4 Enzyme catalysis 403</p> <p>18.5 Chain reactions 407</p> <p>18.6 Explosions 410</p> <p>18.7 Photochemical reactions 411</p> <p>18.8 Charge transfer and electrochemical dynamics 415</p> <p>Exercises 428</p> <p>Endnotes 431</p> <p>Further reading 431</p> <p><b>19 Developing quantum mechanical intuition 433</b></p> <p>19.1 Classical electromagnetic waves 434</p> <p>19.2 Classical mechanics to quantum mechanics 443</p> <p>19.3 Necessity for an understanding of quantum mechanics 444</p> <p>19.4 Quantum nature of light 448</p> <p>19.5 Wave–particle duality 449</p> <p>19.6 The Bohr atom 453</p> <p>Exercises 458</p> <p>Endnotes 460</p> <p>Further reading 461</p> <p><b>20 The quantum mechanical description of nature 462</b></p> <p>20.1 What determines if a quantum description is necessary? 463</p> <p>20.2 The postulates of quantum mechanics 463</p> <p>20.3 Wavefunctions 464</p> <p>20.4 The Schrodinger equation 467</p> <p>20.5 Operators and eigenvalues 469</p> <p>20.6 Solving the Schr ¨ odinger equation 471</p> <p>20.7 Expectation values 475</p> <p>20.8 Orthonormality and superposition 477</p> <p>20.9 Dirac notation 480</p> <p>20.10 Developing quantum intuition 481</p> <p>Exercises 486</p> <p>Endnotes 488</p> <p>Further reading 488</p> <p><b>21 Model quantum systems 489</b></p> <p>21.1 Particle in a box 490</p> <p>21.2 Quantum tunneling 495</p> <p>21.3 Vibrational motion 497</p> <p>21.4 Angular momentum 500</p> <p>Exercises 511</p> <p>Endnotes 513</p> <p>Further reading 513</p> <p><b>22 Atomic structure 514</b></p> <p>22.1 The hydrogenl atom 515</p> <p>22.2 How do you make it better? the Dirac equation 518</p> <p>22.3 Atomic orbitals 520</p> <p>22.4 Many-electron atoms 524</p> <p>22.5 Ground and excited states of He 528</p> <p>22.6 Slater–Condon theory for approximating atomic energy levels 530</p> <p>22.7 Electron configurations 533</p> <p>Exercises 536</p> <p>Endnotes 538</p> <p>Further reading 538</p> <p><b>23 Introduction to spectroscopy and atomic spectroscopy 539</b></p> <p>23.1 Fundamentals of spectroscopy 540</p> <p>23.2 Time-dependent perturbation theory and spectral transitions 544</p> <p>23.3 The Beer–Lambert law 547</p> <p>23.4 Electronic spectra of atoms 550</p> <p>23.5 Spin–orbit coupling 551</p> <p>23.6 Russell–Saunders (<i>LS</i>) coupling 554</p> <p>23.7 <i>jj</i>-coupling 559</p> <p>23.8 Selection rules for atomic spectroscopy 560</p> <p>23.9 Photoelectron spectroscopy 561</p> <p>Exercises 566</p> <p>Endnotes 569</p> <p>Further reading 569</p> <p><b>24 Molecular bonding and structure 570</b></p> <p>24.1 Born–Oppenheimer approximation 571</p> <p>24.2 Valence bond theory 573</p> <p>24.3 Molecular orbital theory 576</p> <p>24.4 The hydrogen molecular ion H<sup>+</sup><sub>2</sub> 577</p> <p>24.5 Solving the H<sub>2</sub> Schr ¨ odinger equation 580</p> <p>24.6 Homonuclear diatomic molecules 585</p> <p>24.7 Heteronuclear diatomic molecules 588</p> <p>24.8 The variational principle in molecular orbital calculations 591</p> <p>24.9 Polyatomic molecules: The Huckel approximation 593</p> <p>24.10 Density functional theory (DFT) 597</p> <p>Exercises 598</p> <p>Endnotes 601</p> <p>Further reading 601</p> <p><b>25 Molecular spectroscopy and excited-state dynamics: Diatomics 602</b></p> <p>25.1 Introduction to molecular spectroscopy 603</p> <p>25.2 Pure rotational spectra of molecules 604</p> <p>25.3 Rovibrational spectra of molecules 609</p> <p>25.4 Raman spectroscopy 614</p> <p>25.5 Electronic spectra of molecules 617</p> <p>25.6 Excited-state population dynamics 622</p> <p>25.7 Electron collisions with molecules 628</p> <p>Exercises 629</p> <p>Endnotes 632</p> <p>Further reading 633</p> <p><b>26 Polyatomic molecules and group theory 634</b></p> <p>26.1 Absorption and emission by polyatomics 635</p> <p>26.2 Electronic and vibronic selection rules 637</p> <p>26.3 Molecular symmetry 641</p> <p>26.4 Point groups 645</p> <p>26.5 Character tables 647</p> <p>26.6 Dipole moments 650</p> <p>26.7 Rovibrational spectroscopy of polyatomic molecules 652</p> <p>26.8 Excited-state dynamics 656</p> <p>Endnotes 667</p> <p>Further reading 667</p> <p><b>27 Light–matter interactions: Lasers, laser spectroscopy, and photodynamics 668</b></p> <p>27.1 Lasers 669</p> <p>27.2 Harmonic generation (SHG and SFG) 673</p> <p>27.3 Multiphoton absorption spectroscopy 675</p> <p>27.4 Cavity ring-down spectroscopy 682</p> <p>27.5 Femtochemistry 685</p> <p>27.6 Beyond perturbation theory limit: High harmonic generation 688</p> <p>27.7 Attosecond physics 690</p> <p>27.8 Photosynthesis 691</p> <p>27.9 Color and vision 694</p> <p>Exercises 697</p> <p>Endnotes 698</p> <p>Further reading 699</p> <p>Appendix 1 Basic calculus and trigonometry 700</p> <p>Appendix 2 The method of undetermined multipliers 703</p> <p>Appendix 3 Stirling’s theorem 705</p> <p>Appendix 4 Density of states of a particle in a box 706</p> <p>Appendix 5 Black-body radiation: Treating radiation as a photon gas 708</p> <p>Appendix 6 Definitions of symbols used in quantum mechanics and quantum chemistry 710</p> <p>Appendix 7 Character tables 712</p> <p>Appendix 8 Periodic behavior 714</p> <p>Appendix 9 Thermodynamic parameters 717</p> <p>Index 719</p>
<p><b>Professor Kurt W. Kolasinski, West Chester University, Pennsylvania, USA</b> <br /> Kurt Kolasinski has been a Professor of physical chemistry at West Chester University since 2014 having joined the faculty in 2006. He has held faculty positions at the University of Virginia (2004 - 2006), Queen Mary University of London (2001 - 2004), and the University of Birmingham (UK) (1995 - 2001). His research focuses on surface science, laser/surface interactions and nanoscience. A particular area of expertise is the formation of nanostructures in silicon and porous silicon using a variety of chemical and laser-based techniques. He is the author of over 100 scholarly publications as well as the widely used textbook Surface Science: Foundations of Catalysis and Nanoscience, which appeared in its third edition in 2012.</p> <p> </p>
<p>Much of chemistry is motivated by asking 'How'? <i>How do I make a primary alcohol? React a Grignard reagent with formaldehyde</i>. Physical chemistry is motivated by asking 'Why'? <i>The Grignard reagent and formaldehyde follow a molecular dance known as a reaction mechanism in which stronger bonds are made at the expense of weaker bonds</i>. <b>If you are interested in asking 'why' and not just 'how', then you need to understand physical chemistry.</b></p> <p><i>Physical Chemistry: How Chemistry Works</i> takes a fresh approach to teaching in physical chemistry. This modern textbook is designed to excite and engage undergraduate chemistry students and prepare them for how they will employ physical chemistry in real life. The student-friendly approach and practical, contemporary examples facilitate an understanding of the physical chemical aspects of any system, allowing students of inorganic chemistry, organic chemistry, analytical chemistry and biochemistry to be fluent in the essentials of physical chemistry in order to understand synthesis, intermolecular interactions and materials properties. For students who are deeply interested in the subject of physical chemistry, the textbook facilitates further study by connecting them to the frontiers of research.</p> <ul> <li>Provides students with the physical and mathematical machinery to understand the physical chemical aspects of any system.</li> <li>Integrates regular examples drawn from the literature, from contemporary issues and research, to engage students with relevant and illustrative details.</li> <li>Important topics are introduced and returned to in later chapters: key concepts are reinforced and discussed in more depth as students acquire more tools.</li> <li>Chapters begin with a preview of important concepts and conclude with a summary of important equations.</li> <li>Each chapter includes worked examples and exercises: discussion questions, simple equation manipulation questions, and problem-solving exercises.</li> <li>Accompanied by supplementary online material: worked examples for students and a solutions manual for instructors.</li> <li>Written by an experienced instructor, researcher and author in physical chemistry, with a voice and perspective that is pedagogical and engaging.</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €