Details

Photoinitiators


Photoinitiators

Structures, Reactivity and Applications in Polymerization
1. Aufl.

von: Jean-Pierre Fouassier, Jacques Lalevée

273,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 12.04.2021
ISBN/EAN: 9783527821266
Sprache: englisch
Anzahl Seiten: 768

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Photoinitiators</b> <p><b>A comprehensive text that covers everything from the processes and mechanisms to the reactions and industrial applications of photoinitiators</b><p><i>Photoinitiators</i> offers a wide-ranging overview of existing photoinitiators and photoinitiating systems and their uses in ever-growing green technologies. The authors—noted experts on the topic—provide a concise review of the backgrounds in photopolymerization and photochemistry, explain the available structures, and examine the excited state properties, involved mechanisms, and structure, reactivity, and efficiency relationships. The text also contains information on the latest developments and trends in the design of novel tailor-made systems.<p>The book explores the role of current systems in existing and emerging processes and applications. Comprehensive in scope, it covers polymerization of thick samples and in-shadow areas, polymerization under LEDs, NIR light induced thermal polymerization, photoinitiators for novel specific and improved properties, and much more. Written by an experienced and internationally renowned team of authors, this important book:<li><bl>Provides detailed information about excited state processes, mechanisms and design of efficient photoinitiator systems</bl></li><li><bl>Discusses the performance of photoinitiators of polymerization by numerous examples of reactions and application</bl></li><li><bl>Includes information on industrial applications</bl></li><li><bl>Presents a review of current developments and challenges</bl></li><li><bl>Offers an introduction to the background information necessary to understand thefield</bl></li><li><bl>The role played by photoinitiators in a variety of different polymerization reactions</bl></li><p>Written for polymer chemists, photochemists, and materials scientists, <i>Photoinitiators</i> will also earn a place in the libraries of photochemists seeking an authoritative, one-stop guide to the processes, mechanisms, and industrial applications of photoinitiators.
<p><b>Volume 1</b></p> <p>Introduction xv</p> <p><b>Part I Photopolymerization Reactions and Photoinitiators: Backgrounds 1</b></p> <p><b>1 Backgrounds in Photopolymerization Reactions: A Short Overview 3</b></p> <p>1.1 Photopolymerization and Photo-cross-linking 3</p> <p>1.1.1 Reactions 3</p> <p>1.1.2 Photoinitiation Step 4</p> <p>1.1.3 Different Kinds of Photopolymerization Reactions 4</p> <p>1.1.4 Monomers and Oligomers 4</p> <p>1.1.5 Photopolymerizable Formulations 6</p> <p>1.1.6 UV Curing 6</p> <p>1.1.7 Imaging 6</p> <p>1.1.8 Controlled Photopolymerization 7</p> <p>1.2 Photopolymerization Reactions 7</p> <p>1.2.1 Monomers and Oligomers in Photopolymerization Reactions 7</p> <p>1.2.1.1 Monomers/Oligomers in Radical Photopolymerization 8</p> <p>1.2.1.2 Monomers/Oligomers in Cationic Photopolymerization 10</p> <p>1.2.1.3 Monomers in Thiol–ene Photopolymerization 11</p> <p>1.2.1.4 Monomers in Charge Transfer Photopolymerization 12</p> <p>1.2.1.5 Monomers in Anionic Photopolymerization 12</p> <p>1.2.1.6 Monomers in Photoinduced Copper-Catalyzed Azide–Alkyne Cycloaddition 12</p> <p>1.2.1.7 Monomers in Photoactivated Hydrosilylation Reactions 12</p> <p>1.2.2 Monitoring the Photopolymerization Reaction 13</p> <p>1.2.3 Kinetic Laws in Photopolymerization Reactions 13</p> <p>1.2.3.1 Radical Photopolymerization 13</p> <p>1.2.3.2 Cationic Photopolymerization 15</p> <p>1.2.3.3 Dependence of Photopolymerization Rate 15</p> <p>1.2.3.4 Laser-Induced Photopolymerization 16</p> <p>1.2.3.5 Kinetics of the Photopolymerization in Bulk 17</p> <p>1.2.4 Oxygen Inhibition 18</p> <p>1.2.5 Role of Light Stabilizers 18</p> <p>1.2.6 Competitive Absorption of Light by a Pigment 20</p> <p>1.2.7 Role of Environment in the Polymerization Reaction 21</p> <p>1.3 Implementation of Photopolymerization Reactions and Brief Overview of the Applications 22</p> <p>1.3.1 Light Sources for Photopolymerization Reactions 22</p> <p>1.3.1.1 Electromagnetic Radiation 22</p> <p>1.3.1.2 Characteristics of a Light Source 23</p> <p>1.3.1.3 Available Light Sources 23</p> <p>1.3.2 Brief Overview of the Application Areas 27</p> <p>References 29</p> <p><b>2 Photoinitiating System 35</b></p> <p>2.1 Characteristics of a Photoinitiating System 35</p> <p>2.1.1 General Properties 35</p> <p>2.1.2 Absorption of Light by a Molecule 35</p> <p>2.1.2.1 Absorption Spectrum 35</p> <p>2.1.2.2 Molecular Orbitals and Energy Levels 36</p> <p>2.1.2.3 Absorption of Light and Optical Transitions 36</p> <p>2.1.2.4 Absorption Intensity 37</p> <p>2.1.2.5 Reciprocity Law 38</p> <p>2.1.2.6 Multiphotonic Absorption 38</p> <p>2.1.3 Jablonski’s Diagram 39</p> <p>2.1.4 Kinetics of the Excited State Processes 40</p> <p>2.1.5 Photoinitiator and Photosensitizer 40</p> <p>2.1.6 Absorption of a Photosensitive System 42</p> <p>2.1.7 Initiation Step of a Photoinduced Polymerization 42</p> <p>2.1.7.1 Production of Initiating Species 43</p> <p>2.1.7.2 Competitive Reactions in the Excited States 43</p> <p>2.1.7.3 Reactivity in Bulk vs. Solution: Role of Diffusion 43</p> <p>2.1.7.4 Cage Effects 44</p> <p>2.2 Approach of Photochemical and Chemical Reactivity 45</p> <p>2.3 Reactivity of a Photosensitive System 46</p> <p>2.4 Efficiency vs. Reactivity 48</p> <p>References 49</p> <p><b>Part II Photoinitiators: Structures, Excited States, Reactivity, and Efficiency 55</b></p> <p><b>3 Cleavable Radical Photoinitiators 59</b></p> <p>3.1 Benzoyl Chromophore-Based Photoinitiators 59</p> <p>3.1.1 Benzoin Derivatives 61</p> <p>3.1.2 Benzoin Ether Derivatives 62</p> <p>3.1.2.1 Absorption of Benzoin Ethers 62</p> <p>3.1.2.2 Photolysis of Benzoin Ethers 63</p> <p>3.1.2.3 Cleavage Process in Benzoin Ethers 64</p> <p>3.1.2.4 Initiating Radicals in Benzoin Ethers 64</p> <p>3.1.2.5 Substitution Effects in Benzoin Ether Derivatives 64</p> <p>3.1.2.6 Effect of Lewis Acids on Benzoin Ethers 65</p> <p>3.1.3 Halogenated Ketones 65</p> <p>3.1.4 Dialkoxyacetophenones and Diphenylacetophenones 65</p> <p>3.1.5 Morpholino and Amino Ketones 66</p> <p>3.1.6 Hydroxy Alkyl Acetophenones 67</p> <p>3.1.7 Ketone Sulfonic Esters 69</p> <p>3.1.8 Thiobenzoate Derivatives 70</p> <p>3.1.9 Sulfonyl Ketones 70</p> <p>3.1.10 Oxysulfonyl Ketones 71</p> <p>3.1.11 Oxime Esters 71</p> <p>3.2 Hydroxy Alkyl Heterocyclic Ketones 72</p> <p>3.3 Benzophenone and Thioxanthone Moiety-Based Cleavable Systems 72</p> <p>3.3.1 Benzophenone Phenyl Sulfides 72</p> <p>3.3.2 Ketosulfoxides 72</p> <p>3.3.3 Benzophenone Thiobenzoates 73</p> <p>3.3.4 Benzophenone Sulfonyl Ketones 73</p> <p>3.3.5 Silyl Moiety Containing Cleavable Benzophenone and Thioxanthone Derivatives 73</p> <p>3.4 Benzoyl Phosphine Oxide Derivatives: a C—P Bond Breaking 73</p> <p>3.5 Trichloromethyl Triazines 76</p> <p>3.6 Biradical Generating Ketones 76</p> <p>3.7 Diketones 76</p> <p>3.8 Silyl Glyoxylates 77</p> <p>3.9 Peroxides 77</p> <p>3.10 Peresters 78</p> <p>3.11 Azides and Aromatic Bis-azides 79</p> <p>3.12 Carbon–Germanium Cleavable Bond-Based Derivatives 79</p> <p>3.13 Carbon–Tin Cleavable Bond-Based PIs 81</p> <p>3.14 Carbon–Silicon Cleavable Bond-Based PIs 81</p> <p>3.14.1 Bis Silyl Ketones 81</p> <p>3.14.2 Tetraacylsilanes 82</p> <p>3.15 Carbon–Nitrogen Cleavable Bond Containing PIs 82</p> <p>3.15.1 Azo Derivatives 82</p> <p>3.15.2 Phenacyl Pyridinium Derivatives 83</p> <p>3.15.3 Phenacyl Ethyl Carbazolium Derivatives 83</p> <p>3.15.4 N-substituted Diazabicyclononanes 83</p> <p>3.16 Boron–Sulfur Cleavable Bond Containing PIs 84</p> <p>3.17 Boron–Nitrogen Cleavable Bond Containing PIs 84</p> <p>3.18 Disilane Derivatives 84</p> <p>3.19 Diselenide and Diphenylditelluride Derivatives 85</p> <p>3.20 Sulfur–Carbon Cleavable Bond-Based Derivatives 85</p> <p>3.21 Disulfide Derivatives 86</p> <p>3.22 Oxyamines 86</p> <p>3.22.1 Alkoxyamines 86</p> <p>3.22.2 Silyloxyamines 86</p> <p>3.23 Barton’s Ester Derivatives 87</p> <p>3.24 Hydroxamic and Thiohydroxamic Acids and Esters 87</p> <p>3.25 Ion Pair PIs 87</p> <p>3.25.1 Organoborates 88</p> <p>3.25.2 Polyoxometalate–onium Salt Ion Pairs 88</p> <p>3.25.3 Naphthalimide–Iodonium Salt Ion Pairs 89</p> <p>3.26 Organometallic Compounds 90</p> <p>3.26.1 Titanocenes 90</p> <p>3.26.2 Miscellaneous Organometallic PIs 90</p> <p>3.26.2.1 Chromium Complexes 90</p> <p>3.26.2.2 Aluminate Complexes 90</p> <p>3.26.2.3 Zirconocene Dichloride 91</p> <p>3.26.2.4 Zinc Complexes 91</p> <p>3.27 Metal Salts and Metallic Salt Complexes 91</p> <p>3.28 Miscellaneous Systems 91</p> <p>3.28.1 Acetone 91</p> <p>3.28.2 Phosphine Oxide Derivatives 92</p> <p>3.28.3 Sulfur–Silicon Cleavable Bond-Based Derivatives 92</p> <p>3.28.4 Digermane and Distannane Derivatives 92</p> <p>3.28.5 Halogenated Ketones 92</p> <p>3.28.6 Hydroxy Alkyl-Conjugated Ketones 92</p> <p>3.28.7 Dibenzothiophenes 93</p> <p>3.28.8 Self-initiating Monomers 93</p> <p>3.28.9 Self-assembled PI Monolayers 93</p> <p>3.28.10 Silicon–Hydride Terminated Surface 93</p> <p>3.28.11 Semiconductor Nanoparticles 93</p> <p>3.28.12 Perovskites (Nanocrystals) 94</p> <p>References 95</p> <p><b>4 Two-Component Radical Photoinitiators 117</b></p> <p>4.1 Ketone/Hydrogen Donor and Ketone/Electron/Proton Donor Couples 117</p> <p>4.1.1 Basic Mechanism 117</p> <p>4.1.2 Hydrogen Donors and Electron/Proton Donors 119</p> <p>4.1.2.1 Amines 119</p> <p>4.1.2.2 Thio Derivatives 121</p> <p>4.1.2.3 Benzoxazines 121</p> <p>4.1.2.4 Aldehydes 122</p> <p>4.1.2.5 Acetals 122</p> <p>4.1.2.6 Hydroperoxides 122</p> <p>4.1.2.7 Silanes 122</p> <p>4.1.2.8 Silylamines 123</p> <p>4.1.2.9 Metal(IV) and Amine Containing Structures 123</p> <p>4.1.2.10 Silyloxyamines 123</p> <p>4.1.2.11 Germanes and Stannanes 124</p> <p>4.1.2.12 Borane Complexes 124</p> <p>4.1.2.13 Phosphorus Containing Compounds 124</p> <p>4.1.2.14 Monomers 125</p> <p>4.1.2.15 Photoinitiator Itself 125</p> <p>4.1.2.16 Alcohols and THF 125</p> <p>4.1.2.17 Polymer Substrates 125</p> <p>4.2 Ketone/Electron Acceptor Systems 125</p> <p>4.2.1 Ketone/Iodonium Salt 125</p> <p>4.2.1.1 Benzophenone (or Thioxanthone)/Iodonium Salt 125</p> <p>4.2.1.2 Silyl Ketone/Iodonium Salt 126</p> <p>4.2.1.3 Silylglyoxylate/Iodonium Salt 126</p> <p>4.2.1.4 Ketone/Novel Iodonium Salts 126</p> <p>4.2.2 Ketone/Triazine 126</p> <p>4.3 Ketone/Diethoxyacetate Salt 127</p> <p>4.4 Well-Known and Novel Type II Ketones 127</p> <p>4.4.1 Benzophenone Derivatives 127</p> <p>4.4.1.1 Benzophenone 127</p> <p>4.4.1.2 Modified Benzophenones 128</p> <p>4.4.2 Thioxanthone Derivatives 132</p> <p>4.4.2.1 Thioxanthone: Absorption and Excited States 132</p> <p>4.4.2.2 Well-Known Thioxanthones as Models 134</p> <p>4.4.2.3 Novel Thioxanthones 136</p> <p>4.4.3 Diketones 138</p> <p>4.4.3.1 Aromatic Diketones 138</p> <p>4.4.3.2 Camphorquinone 139</p> <p>4.4.4 Ketocoumarins 140</p> <p>4.4.5 Coumarins 140</p> <p>4.4.6 Alkyl Phenylglyoxylates 141</p> <p>4.4.7 Silyl Ketones 141</p> <p>4.4.8 Silyl Glyoxylates 141</p> <p>4.4.9 Other Type II Ketone Skeletons 142</p> <p>4.4.9.1 Anthraquinones 142</p> <p>4.4.9.2 Fluorenones 142</p> <p>4.4.9.3 Naphthoquinones 142</p> <p>4.4.9.4 Aliphatic Ketones 142</p> <p>4.4.9.5 Ketoesters 142</p> <p>4.4.9.6 Cleavable Ketones as Type II Photoinitiators 143</p> <p>4.4.9.7 Aldehydes 143</p> <p>4.4.9.8 Acetals 143</p> <p>4.5 Dye-Based Systems 143</p> <p>4.5.1 Usual Dye/Amine Systems 143</p> <p>4.5.1.1 Eosin or Rose Bengal as Models 143</p> <p>4.5.1.2 Dye/Amine Interaction: Some Kinetic Data 144</p> <p>4.5.2 Dye/Additive Systems: Some Examples 144</p> <p>4.5.2.1 Dyes: Overview 144</p> <p>4.5.2.2 Additives 146</p> <p>4.5.2.3 Some Typical Examples of Dye/Additive Systems 147</p> <p>4.5.3 Dye-Linked Additive Ion Pairs 149</p> <p>4.5.4 Dye-Linked Photoinitiator or Co-initiator-Based Systems 149</p> <p>4.5.5 Dye/Onium Salts: A Revival of Interest 150</p> <p>4.5.5.1 Dyes with D–π-A–π-D Arrangements 150</p> <p>4.5.5.2 NIR Polymethine Dyes 150</p> <p>4.5.5.3 Squaraine Dye 151</p> <p>4.5.5.4 Other Examples of Novel Dyes for Novel Applications 151</p> <p>4.6 Organometallic Compound-Based Systems 165</p> <p>4.6.1 Metallocene/Additive 165</p> <p>4.6.2 Metal Carbonyl/Additive 165</p> <p>4.6.3 Metal Complex/Olefin 168</p> <p>4.6.4 Organometallic Complex/Amine 168</p> <p>4.6.5 Copper Complex/Iodonium Salt 168</p> <p>4.6.6 Miscellaneous Organometallic Compound/Additive Couples 168</p> <p>4.6.6.1 Organometallic Compound/Ketone-Based Systems 168</p> <p>4.6.6.2 Ferrocenium Salt/Additive 169</p> <p>4.7 Ketone/Ketone-Based Systems 169</p> <p>4.8 Photoinitiator/Peroxide (or Hydroperoxide)-Based Systems 170</p> <p>4.8.1 Radical Photoinitiator/Peroxide Interactions 170</p> <p>4.8.2 Photobase/Peroxide 170</p> <p>4.9 Type I Photoinitiator/Additive 171</p> <p>4.10 Donor/Acceptor Charge Transfer Systems 172</p> <p>4.10.1 Old Systems 172</p> <p>4.10.2 Amine/Iodonium Salt Systems 172</p> <p>References 173</p> <p><b>5 Cationic Photoinitiating Systems 199</b></p> <p>5.1 Diazonium Salts 199</p> <p>5.2 Onium Salts 200</p> <p>5.2.1 Iodonium and Sulfonium Salts 200</p> <p>5.2.1.1 Basic Model Compounds 200</p> <p>5.2.1.2 Photopolymerization Reaction 201</p> <p>5.2.1.3 Absorption Properties 202</p> <p>5.2.1.4 Decomposition Processes of Iodonium Salts 202</p> <p>5.2.1.5 Decomposition Processes of Sulfonium Salts 205</p> <p>5.2.2 Development of N, P, O (and Others) Centered Onium Salts 206</p> <p>5.2.3 Development in the Iodonium and Sulfonium Salt Series 206</p> <p>5.2.3.1 Substitution Effects in Iodonium and Sulfonium Salt Derivatives 207</p> <p>5.2.3.2 Recent Developments in Iodonium and Sulfonium Salt Derivatives 209</p> <p>5.3 Organometallic Derivatives 212</p> <p>5.3.1 Transition Organometallic Complexes 212</p> <p>5.3.2 Inorganic Transition Metal Complexes 214</p> <p>5.3.3 Nontransition Metal Complexes 214</p> <p>5.4 Photosensitized Decomposition of Onium Salts 214</p> <p>5.4.1 Backgrounds 214</p> <p>5.4.1.1 Photosensitization Through Energy Transfer 214</p> <p>5.4.1.2 Photosensitization Through Electron Transfer 215</p> <p>5.4.2 Novel Developments in Electron Transfer Reactions 219</p> <p>5.4.2.1 Photosensitizer-Linked Cationic Monomer 219</p> <p>5.4.2.2 Pyrilium Salt/Hydroperoxide 219</p> <p>5.4.2.3 Novel Series of Photosensitizers 219</p> <p>5.5 Unconventional Cationic Systems 222</p> <p>5.5.1 Upconversion Nanoparticles 222</p> <p>5.5.2 Carbon Nanotubes 222</p> <p>References 222</p> <p><b>6 Anionic, Photoacid, and Photobase Initiating Systems 241</b></p> <p>6.1 Anionic Photoinitiators 241</p> <p>6.1.1 Inorganic Complexes 241</p> <p>6.1.2 Organometallic Complexes 242</p> <p>6.1.3 Cyano Derivative/Amine System 243</p> <p>6.1.4 Ketoprofen 243</p> <p>6.1.5 Amines 243</p> <p>6.2 Nonionic Photoacid Generators Systems 243</p> <p>6.2.1 Sulfonates 244</p> <p>6.2.2 N-Arylsulfonimides 244</p> <p>6.2.3 Naphthalimides 245</p> <p>6.2.4 Non-salt Pyrene Derivatives 245</p> <p>6.2.5 α-Disulfones 245</p> <p>6.2.6 Fullerenes 245</p> <p>6.2.7 Terarylene-Based Compounds 246</p> <p>6.3 Photobase Generators Systems 246</p> <p>6.3.1 Oxime Esters 246</p> <p>6.3.2 Carbamates 246</p> <p>6.3.3 N-benzylated Structure-Based Photobases 246</p> <p>6.3.4 Benzoylformamides 247</p> <p>6.3.5 Ammonium Chromophore Containing Borate Salts 247</p> <p>6.3.6 Anionic Chromophore Containing Ammonium Salts 248</p> <p>6.3.7 Super Base Containing PBGs 248</p> <p>6.3.8 Other Miscellaneous Systems 249</p> <p>References 249</p> <p><b>7 Reactivity of Radicals Toward Various Substrates: Understanding and Discussion 257</b></p> <p>7.1 Backgrounds 257</p> <p>7.1.1 Direct Detection of Radicals 257</p> <p>7.1.2 Addition of Radicals to Double Bonds 258</p> <p>7.2 Reactivity of Radicals Toward Oxygen, Hydrogen Donors, Monomers, and Additives 259</p> <p>7.2.1 Alkyl and Related Carbon-Centered Radicals 259</p> <p>7.2.2 Aryl Radicals 261</p> <p>7.2.3 Benzoyl Radicals 262</p> <p>7.2.4 Acrylate and Methacrylate Radicals 263</p> <p>7.2.5 Aminoalkyl Radicals 265</p> <p>7.2.5.1 Reactivity 265</p> <p>7.2.5.2 Role of the Class of the Amine 268</p> <p>7.2.5.3 <i>N</i>-Phenyl Glycine Derivatives 268</p> <p>7.2.5.4 Chain Length Effect 268</p> <p>7.2.5.5 Regioselectivity of the Hydrogen Abstraction Reaction 269</p> <p>7.2.5.6 Aminoalkyl Radicals and the Halogen Abstraction Reaction 270</p> <p>7.2.5.7 Reactivity Under Air 270</p> <p>7.2.6 Phosphorus-Centered Radicals 271</p> <p>7.2.7 Thiyl Radicals 273</p> <p>7.2.8 Sulfonyl and Sulfonyloxy Radicals 276</p> <p>7.2.9 Silyl Radicals 277</p> <p>7.2.9.1 Characteristics 277</p> <p>7.2.9.2 Particular Behavior of the Tris(trimethylsilyl)silyl Radical 279</p> <p>7.2.9.3 Reactivity and Photoinitiation Under Air 280</p> <p>7.2.9.4 Silylamines 281</p> <p>7.2.9.5 Other Sources of Silyl Radicals 282</p> <p>7.2.10 Oxyl Radicals 283</p> <p>7.2.11 Peroxyl Radicals 284</p> <p>7.2.11.1 Characteristics 284</p> <p>7.2.11.2 Interaction with H-Donors 286</p> <p>7.2.11.3 Interaction with Monomers 287</p> <p>7.2.11.4 Interaction with Triphenylphosphine 287</p> <p>7.2.11.5 S<sub>H</sub>2 Substitution 288</p> <p>7.2.11.6 Other Oxyls and Peroxyls 288</p> <p>7.2.12 Aminyl Radicals 288</p> <p>7.2.13 Germyl and Stannyl Radicals 290</p> <p>7.2.13.1 Characteristics 290</p> <p>7.2.13.2 Reactivity 290</p> <p>7.2.13.3 Reactivity Under Air 290</p> <p>7.2.13.4 Reactivity and Structure of (TMS)<sub>3</sub>Ge• vs. (TMS)<sub>3</sub>Si• 291</p> <p>7.2.14 Boryl Radicals 292</p> <p>7.2.14.1 Characteristics 292</p> <p>7.2.14.2 Reactivity 293</p> <p>7.2.14.3 Reactivity Under Air 295</p> <p>7.2.14.4 Photoinitiation Under Air 295</p> <p>7.2.15 Lophyl Radicals 295</p> <p>7.2.16 Iminyl Radicals 296</p> <p>7.2.17 Metal-Centered Radicals 296</p> <p>7.2.18 Propagating Radicals 298</p> <p>7.2.19 Radicals in Controlled Photopolymerization Reactions 299</p> <p>7.2.19.1 Photoiniferters and Dithiocarbamyl Radicals 299</p> <p>7.2.19.2 Light-Sensitive Alkoxyamines and Generation of Nitroxides 300</p> <p>7.2.20 Reactivity of Radicals Toward Metal Salts 302</p> <p>7.2.21 Radical/Onium Salt Reactivity in Free Radical Promoted Cationic Photopolymerization (FRPCP) 302</p> <p>References 305</p> <p><b>8 Role of Experimental Conditions on the Performance of a Radical Photoinitiator 321</b></p> <p>8.1 Role of Viscosity 322</p> <p>8.2 Role of the Surrounding Atmosphere 324</p> <p>8.3 Role of the Light Source 325</p> <p>8.4 Role of Monomer Matrix: An Example 327</p> <p>References 328</p> <p><b>9 Reactivity and Efficiency of Radical Photoinitiators 333</b></p> <p>9.1 Reactivity of Photoinitiators 334</p> <p>9.1.1 Excited State Processes 334</p> <p>9.1.2 Cleavage Processes 335</p> <p>9.1.3 Electron and Hydrogen Transfer Reactions 336</p> <p>9.1.4 Electron Transfer Reactions 337</p> <p>9.1.5 Role of Bond Dissociation Energy 337</p> <p>9.1.5.1 Role of Bond Dissociation Energy in Cleavable Systems 338</p> <p>9.1.5.2 Role of Bond Dissociation Energy in Non-cleavable Systems 340</p> <p>9.1.6 Photoinitiator Quenching by Monomers 340</p> <p>9.1.7 Reactivity of the Initiating Radical: Addition to Double Bonds 342</p> <p>9.1.8 Reactivity of the Initiating Radical: Interaction with Hydrogen Donors 344</p> <p>9.2 Reactivity/Efficiency of Photoinitiators: Examples of Structural Effects 345</p> <p>9.2.1 Reactivity/Efficiency Relationships in Fluid Media 345</p> <p>9.2.1.1 Examples of Oil-Soluble Photoinitiating Systems 345</p> <p>9.2.1.2 Examples of Water-Soluble Photoinitiating Systems 349</p> <p>9.2.2 Reactivity/Efficiency Relationships in Heterogeneous Media 350</p> <p>9.2.3 Reactivity/Efficiency Relationships in Bulk 352</p> <p>9.2.4 Polymerization Efficiency in Bulk: Examples of Some Effects 354</p> <p>9.3 Up-to-date Approach of the Reactivity and the Structure/Property Relationships 359</p> <p>References 362</p> <p><b>Volume 2</b></p> <p>Introduction xv</p> <p><b>Part III High Performance Photoinitiating Systems: Achievements, Trends, Challenges, Opportunities and Applications 375</b></p> <p>10 Design of Photoinitiators for Enhanced Performance: A Mechanistic Approach 377</p> <p>11 Multicomponent Radical Photoinitiating Systems for Enhanced Reactivity 399</p> <p>12 Photoinitiating Systems for Free Radical Promoted Cationic Polymerization 435</p> <p>13 Photoinitiators for Novel Specific Properties 463</p> <p>14 Industrial Photoinitiators: A Brief Overview 531</p> <p><b>Part IV Photoinitiators for Specific Reactions and Traditional or Emerging Innovative Applications 537</b></p> <p>15 Photoinitiators and Light Sources: Novel Developments 539</p> <p>16 Photoinitiators for Controlled/Living Polymerization Reactions 559</p> <p>17 Photoinitiators in Specific Polymerization Processes 591</p> <p>18 Photoinitiators for the Curing of Thick or Filled Samples 641</p> <p>19 Photoinitiators in Various Sectors of Industrial Applications 657</p> <p>Conclusion 699</p> <p>Index 703</p>
<p><b><i>Jean-Pierre Fouassier</b> is Emeritus Professor of the University of Haute Alsace, Mulhouse. His research interests are focused on time resolved laser spectroscopy of photoinitiatiors and the design of efficient systems for applications of photopolymerization reactions in various areas.</i></i><p><b><i> Jacques Lalevée</b> is Professor at the Ecole Nationale Superieure de Chimie de Mulhouse ENSCMu at the University of Haute Alsace. His research focus is on free radical chemistry and the design of new polymerization initiating systems.</i></p>
<p><b>A comprehensive text that covers everything from the processes and mechanisms to the reactions and industrial applications of photoinitiators</b></p><p><i>Photoinitiators</i> offers a wide-ranging overview of existing photoinitiators and photoinitiating systems and their uses in ever-growing green technologies. The authors—noted experts on the topic—provide a concise review of the backgrounds in photopolymerization and photochemistry, explain the available structures, and examine the excited state properties, involved mechanisms, and structure, reactivity, and efficiency relationships. The text also contains information on the latest developments and trends in the design of novel tailor-made systems.</p><p>The book explores the role of current systems in existing and emerging processes and applications. Comprehensive in scope, it covers polymerization of thick samples and in-shadow areas, polymerization under LEDs, NIR light induced thermal polymerization, photoinitiators for novel specific and improved properties, and much more. Written by an experienced and internationally renowned team of authors, this important book:</p><li><bl>Provides detailed information about excited state processes, mechanisms and design of efficient photoinitiator systems</bl></li><li><bl>Discusses the performance of photoinitiators of polymerization by numerous examples of reactions and application</bl></li><li><bl>Includes information on industrial applications</bl></li><li><bl>Presents a review of current developments and challenges</bl></li><li><bl>Offers an introduction to the background information necessary to understand the field</bl></li><li><bl>The role played by photoinitiators in a variety of different polymerization reactions</bl></li><p>Written for polymer chemists, photochemists, and materials scientists, <i>Photoinitiators</i> will also earn a place in the libraries of photochemists seeking an authoritative, one-stop guide to the processes, mechanisms, and industrial applications of photoinitiators.</p>

Diese Produkte könnten Sie auch interessieren:

Silicon Containing Hybrid Copolymers
Silicon Containing Hybrid Copolymers
von: Chaobin He, Zibiao Li
EPUB ebook
126,99 €
Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €