Details

Petroleum Refining Design and Applications Handbook, Volume 2


Petroleum Refining Design and Applications Handbook, Volume 2

Rules of Thumb, Process Planning, Scheduling, and Flowsheet Design, Process Piping Design, Pumps, Compressors, and Process Safety Incidents
1. Aufl.

von: A. Kayode Coker

257,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.03.2021
ISBN/EAN: 9781119476450
Sprache: englisch
Anzahl Seiten: 1056

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A must-read for any practicing engineer or student in this area</b></p> <p>There is a renaissance that is occurring in chemical and process engineering, and it is crucial for today's scientists, engineers, technicians, and operators to stay current. This book offers the most up-to-date and comprehensive coverage of the most significant and recent changes to petroleum refining, presenting the state-of-the-art to the engineer, scientist, or student. Useful as a textbook, this is also an excellent, handy go-to reference for the veteran engineer, a volume no chemical or process engineering library should be without.</p>
<p>Preface xv</p> <p>Acknowledgements xvii</p> <p><b>13 Rules of Thumb—Summary 1</b></p> <p>13.0 Introduction 1</p> <p><b>14 Process Planning, Scheduling, and Flowsheet Design 19</b></p> <p>14.1 Introduction 19</p> <p>14.2 Organizational Structure 20</p> <p>14.2.1 Process Design Scope 21</p> <p>14.3 Role of the Process Design Engineer 23</p> <p>14.4 Computer-Aided Flowsheeting 24</p> <p>14.5 Flowsheets—Types 26</p> <p>14.5.1 Block Diagram 26</p> <p>14.5.2 Process Flowsheet or Flow Diagram 26</p> <p>14.5.3 Piping Flowsheet or Mechanical Flow Diagram, or Piping and Instrumentation Diagram (P&ID) 27</p> <p>14.5.4 Combined Process and Piping Flowsheet or Diagram 32</p> <p>14.5.5 Utility Flowsheets or Diagrams (ULDs) 32</p> <p>14.5.6 Special Flowsheets or Diagrams 36</p> <p>14.5.7 Special or Supplemental Aids 36</p> <p>14.6 Flowsheet Presentation 36</p> <p>14.7 General Arrangements Guide 36</p> <p>14.8 Computer-Aided Flowsheet Design/Drafting 38</p> <p>14.9 Flowsheet Symbols 40</p> <p>14.10 Line Symbols and Designations 43</p> <p>14.11 Materials of Construction for Lines 46</p> <p>14.12 Test Pressure for Lines 47</p> <p>14.13 Working Schedules 56</p> <p>14.14 Information Checklists 61</p> <p>14.15 Basic Engineering and Front End Engineering Design (FEED) 63</p> <p>References 64</p> <p><b>15 Fluid Flow 65</b></p> <p>15.1 Introduction 65</p> <p>15.2 Flow of Fluids in Pipes 65</p> <p>15.3 Scope 70</p> <p>15.4 Basis 72</p> <p>15.5 Incompressible Flow 72</p> <p>15.6 Compressible Flow: Vapors and Gases 73</p> <p>15.7 Important Pressure Level References 75</p> <p>15.8 Factors of “Safety” for Design Basis 75</p> <p>15.9 Pipe, Fittings, and Valves 75</p> <p>15.10 Pipe 75</p> <p>15.11 Total Line Pressure Drop 78</p> <p>15.11.1 Relationship Between the Pipe Diameter and Pressure Drop (ΔP) 80</p> <p>15.11.2 Economic Balance in Piping and Optimum Pipe Diameter 82</p> <p>15.12 Reynolds Number, Re (Sometimes Used NRe) 83</p> <p>15.13 Pipe Relative Roughness 85</p> <p>15.14 Darcy Friction Factor, f 85</p> <p>15.15 Friction Head Loss (Resistance) in Pipe, Fittings, and Connections 94</p> <p>15.15.1 Pressure Drop in Straight Pipe: Incompressible Fluid 94</p> <p>15.16 Oil System Piping 96</p> <p>15.16.1 Density and Specific Gravity 97</p> <p>15.16.2 Specific Gravity of Blended Products 98</p> <p>15.16.3 Viscosity 98</p> <p>15.16.4 Viscosity of Blended Products 100</p> <p>15.16.5 Blending Index, H 101</p> <p>15.16.6 Vapor Pressure 101</p> <p>15.16.7 Velocity 101</p> <p>15.16.8 Frictional Pressure Drop, ft of Liquid Head 104</p> <p>15.16.9 Hazen–Williams Equation 105</p> <p>15.16.10 Transmission Factor 107</p> <p>15.16.11 Miller Equation 112</p> <p>15.16.12 Shell–MIT Equation 113</p> <p>15.17 Pressure Drop in Fittings, Valves, and Connections 116</p> <p>15.17.1 Incompressible Fluid 116</p> <p>15.17.2 Velocity and Velocity Head 116</p> <p>15.17.3 Equivalent Lengths of Fittings 117</p> <p>15.17.4 L/D Values in Laminar Region 120</p> <p>15.17.5 Validity of K Values 122</p> <p>15.17.6 Laminar Flow 122</p> <p>15.17.7 Expressing All Pipe Sizes in Terms of One Diameter 124</p> <p>15.17.8 Loss Coefficient 128</p> <p>15.17.9 Sudden Enlargement or Contraction 134</p> <p>15.17.10 For Sudden Contractions 134</p> <p>15.17.11 Piping Systems 136</p> <p>15.18 Resistance of Valves 136</p> <p>15.19 Flow Coefficients for Valves, Cv 137</p> <p>15.20 Flow Meters 138</p> <p>15.20.1 Process Design of Orifice Meter 138</p> <p>15.20.2 Nozzles and Orifices 142</p> <p>Conclusion 167</p> <p>15.21 Estimation of Pressure Loss Across Control Valves 169</p> <p>15.22 The Direct Design of a Control Valve 173</p> <p>15.23 Water Hammer 173</p> <p>15.24 Friction Pressure Drop for Compressible Fluid Flow 175</p> <p>15.24.1 Compressible Fluid Flow in Pipes 176</p> <p>15.24.2 Maximum Flow and Pressure Drop 177</p> <p>15.24.3 Sonic Conditions Limiting Flow of Gases and Vapors 177</p> <p>15.24.4 The Mach Number, Ma 182</p> <p>15.24.5 Critical Pressure Ratio 197</p> <p>15.24.6 Adiabatic Flow 200</p> <p>15.24.7 The Expansion Factor, Y 201</p> <p>15.24.8 Misleading Rules of Thumb for Compressible Fluid Flow 203</p> <p>15.24.9 Other Simplified Compressible Flow Methods 204</p> <p>15.24.10 Friction Drop for Flow of Vapors, Gases and Steam 205</p> <p>15.25 Darcy Rational Relation for Compressible Vapors and Gases 213</p> <p>15.26 Velocity of Compressible Fluids in Pipe 215</p> <p>15.27 Procedure 228</p> <p>15.28 Friction Drop for Compressible Natural Gas in Long Pipe Lines 231</p> <p>15.29 Panhandle-A Gas Flow Formula 235</p> <p>15.30 Modified Panhandle Flow Formula 237</p> <p>15.31 American Gas Association (AGA) Dry Gas Method 237</p> <p>15.32 Complex Pipe Systems Handling Natural (or Similar) Gas 237</p> <p>15.33 Two-Phase Liquid and Gas Flow in Process Piping 239</p> <p>15.33.1 Flow Patterns 239</p> <p>15.33.2 Flow Regimes 242</p> <p>15.33.3 Pressure Drop 243</p> <p>15.33.4 Erosion–Corrosion 248</p> <p>15.33.5 Total System Pressure Drop 250</p> <p>15.33.6 Pipe Sizing Rules 257</p> <p>15.33.7 A Solution for All Two-Phase Problems 261</p> <p>15.33.8 Gas–Liquid Two-Phase Vertical Down Flow 270</p> <p>15.33.9 Pressure Drop in Vacuum Systems 277</p> <p>15.33.10 Low Absolute Pressure Systems for Air 279</p> <p>15.33.11 Vacuum for Other Gases and Vapors 281</p> <p>15.33.12 Pressure Drop for Flashing Liquids 284</p> <p>15.33.13 Sizing Condensate Return Lines 286</p> <p>15.34 UniSim Design PIPESYS 295</p> <p>15.35 Pipe Line Safety 300</p> <p>15.36 Mitigating Pipeline Hazards 301</p> <p>15.37 Examples of Safety Design Concerns 301</p> <p>15.38 Safety Incidents Related With Pipeworks and Materials of Construction 303</p> <p>15.39 Lessons Learned From Piping Designs 319</p> <p>15.40 Design of Safer Piping 320</p> <p>15.40.1 Best Practices for Process Piping 320</p> <p>15.40.2 Designing Liquid Piping 321</p> <p>15.40.3 Best Practices for Liquid Piping 322</p> <p>Nomenclature 324</p> <p>Greek Symbols 326</p> <p>Subscripts 327</p> <p>References 327</p> <p><b>16 Pumps 331</b></p> <p>16.1 Pumping of Liquids 331</p> <p>16.2 Pump Design Standardization 336</p> <p>16.3 Basic Parts of a Centrifugal Pump 336</p> <p>16.4 Centrifugal Pump Selection 341</p> <p>16.5 Hydraulic Characteristics for Centrifugal Pumps 359</p> <p>16.6 Suction Head or Suction Lift, hs 367</p> <p>16.7 Discharge Head, hd 369</p> <p>16.8 Velocity Head 369</p> <p>16.9 Friction 370</p> <p>16.10 Net Positive Suction Head (NPSH) and Pump Suction 370</p> <p>16.11 General Suction System 378</p> <p>16.12 Reductions in NPSHR 384</p> <p>16.13 Charting NPSHR Values of Pumps 384</p> <p>16.14 Net Positive Suction Head (NPSH) 386</p> <p>16.15 NPSH Requirement for Liquids Saturation With Dissolved Gases 388</p> <p>16.16 Specific Speed 390</p> <p>16.17 Rotative Speed 394</p> <p>16.18 Pumping Systems and Performance 395</p> <p>16.19 Power Requirements for Pumping Through Process Lines 399</p> <p>16.20 Affinity Laws 405</p> <p>16.21 Centrifugal Pump Efficiency 417</p> <p>16.22 Effects of Viscosity 421</p> <p>16.23 Temperature Rise and Minimum Flow 436</p> <p>16.24 Centrifugal Pump Specifications 440</p> <p>16.25 Number of Pumping Units 441</p> <p>16.26 Rotary Pumps 448</p> <p>16.27 Reciprocating Pumps 452</p> <p>16.28 Pump Selection 456</p> <p>16.29 Selection Rules-of-Thumb 456</p> <p>16.30 Case Studies 459</p> <p>16.31 Pump Cavitations 464</p> <p>16.32 Pump Fundamentals 474</p> <p>16.33 Operating Philosophy 475</p> <p>16.34 Piping 485</p> <p>16.35 Troubleshooting Checklist for Centrifugal Pumps 485</p> <p>Nomenclature 493</p> <p>Subscripts 494</p> <p>Greek Symbols 495</p> <p>References 495</p> <p><b>17 Compression Equipment 497</b></p> <p>17.1 Introduction 497</p> <p>17.2 General Application Guide 498</p> <p>17.3 Specification Guides 499</p> <p>17.4 General Considerations for Any Type of Compressor Flow Conditions 501</p> <p>17.4.1 Fluid Properties 501</p> <p>17.4.2 Compressibility 502</p> <p>17.4.3 Corrosive Nature 502</p> <p>17.4.4 Moisture 502</p> <p>17.4.5 Special Conditions 502</p> <p>17.5 Reciprocating Compression 503</p> <p>17.6 Suction and Discharge Valves 514</p> <p>17.7 Specification Sheet 523</p> <p>17.8 Performance Considerations 524</p> <p>17.9 Compressor Performance Characteristics 557</p> <p>17.10 Hydrogen Use in the Refinery 594</p> <p>17.10.1 IsoTherming Technology for Kerosene, Vacuum Gas Oil, and Diesel Hydroprocessing 595</p> <p>Nomenclature 829</p> <p>Greek Symbols 832</p> <p>Subscripts 832</p> <p>References 833</p> <p>Glossary of Petroleum and Technical Terminology 837</p> <p>Appendix D 929</p> <p>Appendix E 1005</p> <p>Index 1019</p> <p>About the Author 1025</p>
"...the author is committed to sharing a career's worth of lessons and design experiences, offering clear explanations on individual topics...a useful addition to an experienced engineer's library of information. It could also be extremely helpful to engineering students..."<br />The Chemical Engineer, November 2021
<p><b>A. Kayode Coker</b> PhD, is Engineering Consultant for AKC Technology, an Honorary Research Fellow at the University of Wolverhampton, U.K., a former Engineering Coordinator at Saudi Aramco Shell Refinery Company (SASREF) and Chairman of the department of Chemical Engineering Technology at Jubail Industrial College, Saudi Arabia. He has been a chartered chemical engineer for more than 30 years. He is a Fellow of the Institution of Chemical Engineers, U.K. (C. Eng., FIChemE), and a senior member of the American Institute of Chemical Engineers (AIChE).  He holds a B.Sc. honors degree in Chemical Engineering, a Master of Science degree in Process Analysis and Development and Ph.D. in Chemical Engineering, all from Aston University, Birmingham, U.K., and a Teacher's Certificate in Education at the University of London, U.K. He has directed and conducted short courses extensively throughout the world and has been a lecturer at the university level. His articles have been published in several international journals. He is an author of six books in chemical engineering, a contributor to the <i>Encyclopedia of Chemical Processing and Design</i>, Vol 61 and a certified train — the mentor trainer. A Technical Report Assessor and Interviewer for chartered chemical engineers (IChemE) in the U.K. He is a member of the International Biographical Centre in Cambridge, U.K. (IBC) as Leading Engineers of the World for 2008. Also, he is a member of International Who's Who of Professionals<sup>TM</sup> and Madison Who's Who in the U.S.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €