Details

Persistent Toxic Substance Monitoring


Persistent Toxic Substance Monitoring

Nanoelectrochemical Methods
1. Aufl.

von: Xing-Jiu Huang, Xing Chen, Meng Yang

169,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 24.04.2018
ISBN/EAN: 9783527344123
Sprache: englisch
Anzahl Seiten: 320

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Filling the urgent need for a professional book that specifies the applications of nanoelectrochemistry for the monitoring of persistent toxic substances, this monograph clearly describes the design concept, construction strategies and practical applications of PTS sensing interfaces based on nanoelectrochemical methods. The comprehensive and systematic information not only provides readers with the fundamentals, but also inspires them to develop PTS monitoring sensors based on functional nanostructures and nanomaterials. Of interestto chemists, electrochemistry researchers, materials researchers, environmental scientists, and companies dealing with electrochemical treatment and environment.
Preface xi 1 Introduction 1 Wen-Yi Zhou and Xing-Jiu Huang References 5 2 PTS in Aquatic Environment 15 Pei-Hua Li, JianWang, Jian-Hua Sun, and Xing-Jiu Huang 2.1 Introduction 15 2.2 Persistent Organic Pollutants in Aquatic Environment 17 2.2.1 Polychlorinated Biphenyls 18 2.2.2 Organochlorine Pesticides 19 2.2.3 Polycyclic Aromatic Hydrocarbons 20 2.2.4 Hydrazine 22 2.2.5 Mercaptan 22 2.3 Heavy Metal Pollutants in Aquatic Environment 23 2.3.1 Lead Ions 24 2.3.2 Mercury Ions 25 2.3.3 Cadmium Ions 26 2.3.4 Chromium Ions 26 2.3.5 Arsenic Ions 27 2.3.6 Copper Ions 28 2.3.7 Zinc Ions 28 2.3.8 Silver Ions 29 2.3.9 Cobalt Ions 30 2.3.10 Nickel Ions 31 2.4 Conclusion and Outlook 32 References 32 3 Common Electrochemical Principles for PTS Detection 47 Pei-Hua Li and Xing-Jiu Huang 3.1 Introduction 47 3.2 Methods and Principles of Electrochemical Detection for PTS 48 3.2.1 Stripping Voltammetry 48 3.2.1.1 Anodic Stripping Voltammetry 51 3.2.1.2 Cathodic Stripping Voltammetry 54 3.2.1.3 Adsorption Stripping Voltammetry 56 3.2.2 Other Voltammetry 58 3.2.2.1 Linear Sweep Voltammetry 58 3.2.2.2 SquareWave Voltammetry 59 3.2.2.3 Pulse Voltammetry 60 3.2.2.4 Cyclic Voltammetry 61 3.2.3 Polarographic Analysis 64 3.2.3.1 Linear Sweep (DC) Polarography 66 3.2.3.2 AC, SquareWave, Pulse Polarography 68 3.2.4 Electrochemical Impedance Spectroscopy 72 3.3 Conclusion and Outlook 75 References 76 4 Design Concept of Nanoelectrochemical Sensing Interface 83 Meng Yang and Xing-Jiu Huang 4.1 Introduction 83 4.2 Nanoelectrochemical Sensing Interface 84 4.2.1 Adsorption Performance of Nanomaterials Enhances the Electrochemical Signal 84 4.2.2 Specific Recognition and Adsorption of Nanomaterials 92 4.2.3 Excellent Electrocatalytic Performance of Noble Metal-based Nanomaterials 98 4.2.4 Controllably Synthesize Specific Crystal Facet to Enhance Electrochemical Signals 106 4.2.5 Based on Charge Conduction Inhibition Principle 107 4.3 Conclusions and Outlook 115 References 115 5 Carbon-based Nanomaterials Enhanced Selectivity and Sensitivity Toward PTS 125 Min Jiang and Xing-Jiu Huang 5.1 Introduction 125 5.2 Carbon Nanotubes andTheir Complexes 126 5.2.1 Plasma-modified Multiwalled Carbon Nanotubes 127 5.2.1.1 O2-plasma-oxidized Carbon Nanotubes 128 5.2.1.2 NH3-plasma-treated Carbon Nanotubes 130 5.2.2 Inorganic Functionalization 135 5.2.2.1 Metal Nanoparticles Functionalized CNTs 135 5.2.2.2 Metal Oxides Nanoparticles Functionalized CNTs 140 5.2.3 Organic Functionalization 142 5.2.3.1 Small Organic Molecules 142 5.2.3.2 Polymers 145 5.2.3.3 DNA 146 5.2.3.4 Proteins and Enzymes 147 5.3 Graphene and Its Complexes 148 5.3.1 Inorganic Functionalization 148 5.3.1.1 Metal 148 5.3.1.2 Metal Oxides Nanoparticles Functionalized Graphene 150 5.3.1.3 Other Inorganic Functionalization 153 5.3.2 Organic Molecules-graphene Nanocomposites 156 5.3.2.1 Small Molecules Containing Special Groups 156 5.3.2.2 Polymer Functionalized Graphene 156 5.4 Carbonaceous Nanospheres (CNSs) andTheir Complexes 159 5.4.1 Polypyrrole/Carbonaceous Nanospheres 160 5.4.2 Amino Functionalized Carbon Microspheres 163 5.4.3 Hydroxylation/Carbonylation Carbonaceous Microsphere 166 5.4.3.1 Lead(II) Detection 166 5.5 Others 171 5.6 Conclusions and Outlook 174 References 174 6 Facet and Phase-dependent Electroanalysis Performance of Nanocrystals in PTSMonitoring: Demonstrated by Density Functional Theory X-ray Absorption Fine Structure Spectroscopy 195 Wen-Yi Zhou and Xing-Jiu Huang 6.1 Introduction 195 6.2 Facet-dependent Electroanalysis Performance 197 6.2.1 High Reactive Surface of SnO2 Nanosheets for Electrochemical Sensing 197 6.2.1.1 Morphologic and Structure Characterization of Ultrathin SnO2 Nanosheets 198 6.2.1.2 Electrochemical Detection of As(III) 200 6.2.1.3 Possible Mechanism Based on Adsorption 201 6.2.2 Cu2O Microcrystals for Detecting Lead Ions 202 6.2.2.1 Morphology and Structure 202 6.2.2.2 Facet-Dependent Electrochemical Behaviors of Cu2O 203 6.2.2.3 Density FunctionalTheory (DFT) Calculation 204 6.2.3 Electrochemical Properties of Co3O4 Nanocrystals 205 6.2.3.1 Morphology and Structure 206 6.2.3.2 Electrochemical Detection of Heavy Metal Ions 207 6.2.3.3 DFT Calculations 208 6.2.4 Electrochemical Stripping Behaviors of Fe3O4 Nanocrystals 210 6.2.4.1 Characterization of Fe3O4 Nanocrystals 211 6.2.4.2 Stripping Behaviors of HMIs on Fe3O4 Nanocrystals 213 6.2.4.3 Theoretical Calculations 214 6.2.5 Facet-Dependent Performance of ?-Fe2O3 Nanocrystals 215 6.2.5.1 Morphology and Structure of ?-Fe2O3 215 6.2.5.2 DFT Calculations 217 6.2.6 Electrochemical Properties of Sub-20 nm-Fe3O4 Nanocrystals 219 6.2.6.1 Morphology and Structure 220 6.2.6.2 Electrochemical Detection Performance 222 6.2.6.3 DFT Calculations 223 6.2.7 Single-Crystalline (001) TiO2 Nanosheets 224 6.2.7.1 Morphology and Structure of TiO2 Nanosheets 225 6.2.7.2 Electrochemical Performance of TiO2 Toward Hg(II) 226 6.2.7.3 Defect-dependent Adsorption Capability and Electronic Properties 226 6.2.8 Facet-dependent Stripping Behavior of SnO2 Nanocrystal 229 6.2.8.1 Morphologic and Structure Characterization of SnO2 Nanoparticles 231 6.2.8.2 Electrochemical Detection of Pb(II) and Cd(II) 232 6.2.8.3 Evidence of Reasonable Mechanism: DFT Calculations and XAFS Analysis 233 6.2.8.4 Evidence of XAFS 235 6.3 Phase-dependent Electroanalysis Performance 237 6.3.1 Phase-dependent Sensitivity of ?- and ?-Fe2O3 237 6.3.1.1 Morphologic and Structure Characterization of ?-Fe2O3 and ?-Fe2O3 Nanoflowers 239 6.3.1.2 Phase-dependent Stripping Behavior 239 6.3.1.3 Reasonable Mechanism Based on XPS and EXAFS 241 6.4 Conclusions and Outlook 244 References 244 7 Mutual Interferences Between Heavy Metal Ions on the Electrochemical Nano-interfaces 263 Min Jiang and Xing-Jiu Huang 7.1 Introduction 263 7.2 One-component Interference 263 7.2.1 Interference of Cu2+ on the Detection of As3+ 263 7.2.2 Interference of Hg2+ on the Detection of Pb2+ 267 7.2.3 Mutual Interference of Cu2+ and Pb2+ 269 7.2.4 Interference of Ag+ on the Detection of Pb2+ 269 7.2.5 Mutual Interference of Cu2+ and Hg2+ 270 7.2.6 Mutual Interference of Cd2+ and Zn2+ 270 7.2.7 Mutual Interference of Cd2+ and Pb2+ 273 7.2.8 Interference of Sn2+ on the Detection of Pb2+ 276 7.2.9 Others 276 7.3 Multi-component Interference – Artificially Added Interference Ions 277 7.3.1 Metals and Metal Oxides and Their Complexes 277 7.3.1.1 Au 277 7.3.1.2 MgO 279 7.3.1.3 SnO2 280 7.3.1.4 Fe2O3 282 7.3.1.5 MgSiO3 283 7.3.1.6 AuNPs/CeO2-ZrO2 285 7.3.2 Carbon-based Nanomaterials and Their Complexes 287 7.3.2.1 RGO 287 7.3.2.2 CNTs 291 7.4 Multi-component Interference – In the Actual Environment 294 7.4.1 Rice Sample 294 7.4.2 Rat Brain 295 7.5 Several Examples of Reducing or Even Eliminating Interference 296 7.6 Conclusion 298 References 298 8 Metal Oxide and Its Composite Nanomaterials for ElectrochemicalMonitoring of PTS: Design, Preparation, and Application 305 Shan-Shan Li and Xing-Jiu Huang 8.1 Introduction 305 8.2 Metal Oxide Nanomaterials Electrode 305 8.2.1 Fe-based Oxide Nanomaterials 305 8.2.2 Co-based Oxide Nanomaterials 313 8.2.3 Mn-based Oxide Nanomaterials 323 8.2.4 Mg-based Nanomaterials 326 8.2.5 SnO2 Nanomaterials 330 8.2.6 Bi-based Nanomaterials 334 8.2.7 Other Oxide Nanomaterials 336 8.3 Metal Oxide Composite Nanomaterials 338 8.3.1 Noble Metals and Metal Oxide Composite Nanomaterials 338 8.3.2 Noble Metals Free and Metal Oxide Composite Nanomaterials 347 8.4 Others Nanomaterials 358 8.4.1 Nanomaterials without Noble Metal 358 8.4.2 Noble Metal-based Alloy Nanomaterials 370 8.5 Conclusion 373 References 374 9 Nanogap for Detection of PTS 401 Yi-Xiang Li and Xing-Jiu Huang 9.1 Introduction 401 9.2 Nanogap for Detection of Polychlorinated Biphenyls 403 9.2.1 Fabrication of Nanogap Electrode 403 9.2.2 Detection of Polychlorinated Biphenyls 405 9.3 Nanogap for Detection of Biotin–Streptavidin 413 9.3.1 Fabrication of Nanogap Electrode 413 9.3.2 Detection of Biotin–Streptavidin 418 9.4 Nanogap for Detection of Mercury Ions 421 9.4.1 Fabrication of Nanogap Electrode 422 9.4.2 Detection of Mercury Ions 424 9.5 Nanogap for Detection of OrganicThiols 430 9.5.1 Fabrication of Nanogap Electrode 431 9.5.2 Detection of an OrganicThiol 432 9.6 Conclusions and Outlook 433 References 434 10 Determination of PTS Using Ultra-microelectrodes 443 Meng Yang and Xing-Jiu Huang 10.1 Introduction 443 10.2 Sensitively Detection of Persistent Toxic Substances Based on Ultra-microelectrodes 444 10.2.1 Ultra-microdisc Electrode 444 10.2.2 Ultra-micro Array Electrode 462 10.3 Conclusions and Outlook 465 References 465 11 ElectrochemicalMethods Integrated with Spectral Technology for Detection of PTS 473 Yi-Xiang Li, Tian-Jia Jiang, and Xing-Jiu Huang 11.1 Introduction 473 11.2 Electrochemical Integrated with X-ray Fluorescence 474 11.2.1 Electrodeposition-assisted X-ray Fluorescence 474 11.2.1.1 Application: Electrodeposition-assisted X-ray Fluorescence for the Quantitative Determination of HMIs 475 11.2.2 Electroadsorption-assisted X-ray Fluorescence 479 11.2.2.1 Application: Electroadsorption-assisted Direct Determination of Trace ArsenicWithout Interference Using XRF 480 11.3 Electrochemical Integrated with Laser-induced Breakdown Spectroscopy 484 11.3.1 Electrodeposition-assisted Laser-induced Breakdown Spectroscopy 485 11.3.1.1 Application: Electrochemical LIBS for Enhanced Detection of Cd(II) Without Interference in Complex Environmental Sample (Rice) 485 11.3.1.2 Application: On-site Quantitative Elemental Analysis of Metal Ions in Aqueous Solutions by Underwater Laser-induced Breakdown Spectroscopy Combined with Electrodeposition Under Controlled Potential 490 11.3.2 Electroadsorption-assisted Laser-induced Breakdown Spectroscopy 496 11.3.2.1 Application: In Situ Underwater LIBS Analysis for Trace Cr(VI) in Aqueous Solution Supported by Electrosorption Enrichment and a Gas-assisted Localized Liquid Discharge Apparatus 497 11.4 Conclusions and Outlook 502 References 503 12 Conclusion and Perspectives 513 Shan-Shan Li and Xing-Jiu Huang References 516 Index 521
Professor Xing-Jiu Huang is Vice Director of Hefei Institute of Intelligent Machines, Chinese Academy of Sciences (CAS). He completed his Ph.D. degree at University of Science and Technology of China in 2004. He then worked as a postdoctoral researcher in KAIST with Professor Yang-Kyu Choi, South Korea, during 2005-2008, and in Oxford University with Professor Richard Guy Compton, UK, during 2008–2010. Since 2009, Professor Huang has been admitted a Member of The Royal Society of Chemistry and was selected as the "Hundred Talents Program of Chinese Academy of Sciences" in 2011. He has authored over 100 scientific publications and received numerous scientific awards, including the Leading Talent in Colleges and Universities in Anhui Province, China, the 15th Scientific and Technological Award for Young Talents of Anhui Province in 2013, Second Prize of Science and Technology Award of Anhui Province in 2013, Second Prize of Science and Technology Award of China Association for Instrumental Analysis in 2014, and Excellent Graduate Advisor Award from CAS in 2013 and 2015. Dr. Xing Chen received his M.S. and Ph. D degree from Hefei Institute of Intelligent Machines, CAS. Then he continues his work in the same institute as Post-doc, Assistant Professor and Associate Professor. He has authored and co-authored 45 papers that published in peer-reviewed journals. He gets many awards, including second prize of Science and Technology Award of Anhui Province in 2013, second prize of Science and Technology Award of China Association for Instrumental Analysis in 2014. Meng Yang completed his B.S. degree in chemistry from Anhui Normal University, China, in 2013. Then he pursuits his Ph.D. degree in University of Science and Technology of China with Professor Xing-Jiu Huang. He has received several awards, including Chinese Academy of Sciences Dean Excellence Award, National Scholarship for Graduate Students, and 2017 ORGANO (Water & Environment) Scholarship. Currently, his research mainly focuses on the sensing nanomaterials, environmental electrochemical nanosensors, and electrochemical determination of PTS.
Filling the urgent need for a professional book that specifies the applications of nanoelectrochemistry for the monitoring of persistent toxic substance (PTS), this monograph clearly describes the design concept, construction strategies and practical applications of PTS sensing interfaces based on nanoelectrochemical methods. The comprehensive and systematic information not only provides readers with the fundamentals, but also inspires them to develop PTS monitoring sensors based on functional nanostructures and nanomaterials. Of interest to chemists, electrochemistry researchers, materials researchers, environmental scientists, and companies dealing with electrochemical treatment and environment.

Diese Produkte könnten Sie auch interessieren:

Design of Piezo Inkjet Print Heads
Design of Piezo Inkjet Print Heads
von: J. Frits Dijksman
EPUB ebook
142,99 €
Design of Piezo Inkjet Print Heads
Design of Piezo Inkjet Print Heads
von: J. Frits Dijksman
PDF ebook
142,99 €
Aptamers for Analytical Applications
Aptamers for Analytical Applications
von: Yiyang Dong
PDF ebook
124,99 €