Details

Perovskites and Related Mixed Oxides


Perovskites and Related Mixed Oxides

Concepts and Applications
1. Aufl.

von: Pascal Granger, Vasile I. Parvulescu, Serge Kaliaguine, Wilfrid Prellier

322,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 05.11.2015
ISBN/EAN: 9783527686599
Sprache: englisch
Anzahl Seiten: 1056

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This comprehensive handbook and ready reference details all the main achievements in the field of perovskite-based and related mixed-oxide materials. The authors discuss, in an unbiased manner, the potentials as well as the challenges related to their use, thus offering new perspectives for research and development on both an academic and industrial level. <br> The first volume begins by summarizing the different synthesis routes from molten salts at high temperatures to colloidal crystal template methods, before going on to focus on the physical properties of the resulting materials and their related applications in the fields of electronics, energy harvesting, and storage as well as electromechanics and superconductivity. The second volume is dedicated to the catalytic applications of perovskites and related mixed oxides, including, but not limited to total oxidation of hydrocarbons, dry reforming of methane and denitrogenation. The concluding section deals with the development of chemical reactors and novel perovskite-based applications, such as fuel cells and high-performance ceramic membranes. Throughout, the contributions clearly point out the intimate links between structure, properties and applications of these materials, making this an invaluable tool for materials scientists and for catalytic and physical chemists.<br>
<p>List of Contributors XXIII</p> <p>Preface XXXV</p> <p><b>Volume 1 Part One Rational Design and Related Physical Properties 1</b></p> <p><b>1 From Solid-State Chemistry to Soft Chemistry Routes 3</b><br /><i>Vicente Rives</i></p> <p>1.1 Introduction 3</p> <p>1.2 Processes Involving Solids 4</p> <p>1.2.1 The Ceramic Method 4</p> <p>1.2.2 Microwave Synthesis 5</p> <p>1.2.3 Self-Propagating High-Temperature Synthesis (SHS) 6</p> <p>1.2.4 The Precursor Method 6</p> <p>1.2.5 Hydrothermal Synthesis 7</p> <p>1.2.6 High-Pressure Methods 8</p> <p>1.2.7 Mechanochemistry 8</p> <p>1.2.8 Other Methods Starting from Solids 9</p> <p>1.3 Processes Involving Liquids 9</p> <p>1.3.1 Flux Method 9</p> <p>1.3.2 Molten Salt Electrolysis 10</p> <p>1.3.3 Sol–Gel 10</p> <p>1.3.4 Spray Drying (SD) and Related Methods 13</p> <p>1.3.4.1 Freeze-Drying 14</p> <p>1.3.4.2 Spray–Freeze-Drying 14</p> <p>1.3.5 Molecular Self-Assembling 14</p> <p>1.3.6 Other Methods Starting from Liquid Reactants or Solutions 15</p> <p>1.3.6.1 Ionic Liquids 15</p> <p>1.3.6.2 The Gel Combustion Method 15</p> <p>1.3.6.3 Sonication 15</p> <p>1.3.6.4 Reverse Microemulsion 15</p> <p>1.4 Processes Involving Gases or Vapors 16</p> <p>1.4.1 Gas Flame Combustion 16</p> <p>1.4.2 Chemical Vapor Deposition (CVD) 16</p> <p>1.5 Single Crystals 16</p> <p>1.6 Nanoparticles 18</p> <p>1.7 Films 19</p> <p>1.8 Conclusions 19</p> <p>References 20</p> <p><b>2 Mechanochemistry 25</b><br /><i>Houshang Alamdari and Sébastien Royer</i></p> <p>2.1 Introduction 25</p> <p>2.2 Historical Development 25</p> <p>2.3 Terminology 28</p> <p>2.4 Mechanosynthesis Process 29</p> <p>2.5 Milling Facilities 32</p> <p>2.5.1 Spex Mills 32</p> <p>2.5.2 Planetary Mills 34</p> <p>2.5.3 Attrition Mills 35</p> <p>2.5.4 Zoz Mills 36</p> <p>2.6 Mechanosynthesis of Perovskites 37</p> <p>2.6.1 Looking for an Alternative Route to Synthesize New Compositions 38</p> <p>2.6.2 Lowering Sintering Temperature 38</p> <p>2.6.3 Reducing Crystallite Size and Modifying Particle Morphology 39</p> <p>2.6.4 Increasing Specific Surface Area 40</p> <p>2.7 Concluding Remarks 42</p> <p>References 43</p> <p><b>3 Synthesis and Catalytic Applications of Nanocast Oxide-Type Perovskites 47</b><br /><i>Mahesh Muraleedharan Nair and Serge Kaliaguine</i></p> <p>3.1 Introduction 47</p> <p>3.2 Perovskite Structure 48</p> <p>3.3 Evolution of Perovskite Synthesis 49</p> <p>3.4 General Principles of Nanocasting 51</p> <p>3.5 Nanocasting of Perovskites 52</p> <p>3.6 Catalytic Studies 56</p> <p>3.6.1 Total Oxidation of Methane 56</p> <p>3.6.2 Reduction of NO to N2 57</p> <p>3.6.3 Chemical Looping Combustion 58</p> <p>3.6.4 Total Oxidation of Methanol 59</p> <p>3.6.5 Dry Reforming of Methane 60</p> <p>3.7 Conclusions and Perspectives 63</p> <p>References 64</p> <p><b>4 Aerosol Spray Synthesis of Powder Perovskite-Type Oxides 69</b><br /><i>Davide Ferri, Andre Heel, and Dariusz Burnat</i></p> <p>4.1 Introduction 69</p> <p>4.2 Flame Spray Synthesis 71</p> <p>4.2.1 Methane Flame 72</p> <p>4.2.2 Acetylene Flame 75</p> <p>4.3 Flame Hydrolysis 80</p> <p>4.4 Ultrasonic Spray Synthesis 82</p> <p>4.4.1 General Particle Properties 83</p> <p>4.4.2 Citric Acid Assisted Synthesis 85</p> <p>References 87</p> <p><b>5 Application of Microwave and Ultrasound Irradiation in the Synthesis of Perovskite-Type Oxides ABO3 91</b><br /><i>Juan C. Colmenares, Agnieszka Magdziarz, and Pawe? Lisowski</i></p> <p>5.1 Introduction 91</p> <p>5.2 Microwave Methodology 92</p> <p>5.2.1 Basic Concepts of Microwave Chemistry 92</p> <p>5.2.2 Microwave Heating in Combination with Traditional Synthesis Methods 93</p> <p>5.2.2.1 Microwave-Assisted Hydrothermal Method (HTMW) 93</p> <p>5.2.2.2 Other Microwave-Assisted Methods 100</p> <p>5.3 Ultrasound Methodology 101</p> <p>5.3.1 Basic Concepts of Ultrasound Chemistry 101</p> <p>5.3.2 Ultrasound-Assisted Coprecipitation Method 102</p> <p>5.3.3 Ultrasound-Assisted Sol–Gel Method 103</p> <p>5.3.4 Ultrasound Spray Pyrolysis 105</p> <p>5.3.5 Other Ultrasound-Assisted Methods 107</p> <p>5.4 Concluding Remarks and Outlook 108</p> <p>Acknowledgments 108</p> <p>References 109</p> <p><b>6 Three-Dimensionally Ordered Macroporous (3DOM) Perovskite Mixed Metal Oxides 113</b><br /><i>Masahiro Sadakane and Wataru Ueda</i></p> <p>6.1 Introduction 113</p> <p>6.2 3DOM Materials 114</p> <p>6.2.1 Preparation of 3DOM Materials 114</p> <p>6.2.1.1 Colloidal Crystal Templates 114</p> <p>6.2.1.2 Infiltration of Precursors in the Voids of Templates 122</p> <p>6.2.1.3 Removal of Templates 122</p> <p>6.2.2 Structure of 3DOM Materials (Inverse Opal Structures) 122</p> <p>6.3 Preparation of 3DOM Perovskite Mixed Metal Oxides 123</p> <p>6.3.1 Precursor Solution 123</p> <p>6.3.2 Selection of Sphere Templates 126</p> <p>6.3.3 Synthesis Methods and Applications of 3DOM Perovskite Mixed Metal Oxides 127</p> <p>6.3.4 Preparation of 3DOM LaFeO3 with Different Pore Sizes 131</p> <p>6.3.4.1 Preparation of Polymer Spheres and Colloidal Crystal Templates 131</p> <p>6.3.4.2 Synthesis of 3DOM LaFeO3 134</p> <p>6.3.4.3 Characterization of 3DOM LaFeO3 134</p> <p>6.3.4.4 Formation Mechanism 136</p> <p>6.4 Conclusions 138</p> <p>References 138</p> <p><b>7 Thin Films and Superlattice Synthesis 143</b><br /><i>Carmela Aruta and Antonello Tebano</i></p> <p>7.1 Introduction 143</p> <p>7.2 Thin Films and Superlattices Growth 145</p> <p>7.2.1 Deposition Techniques 145</p> <p>7.2.1.1 MBE 145</p> <p>7.2.1.2 PLD 149</p> <p>7.2.1.3 Sputtering 153</p> <p>7.2.2 In Situ Monitoring: RHEED and Plume Analysis 156</p> <p>7.2.2.1 RHEED 156</p> <p>7.2.2.2 Plume Analysis 159</p> <p>7.3 Concluding Remarks 162</p> <p>Acknowledgments 162</p> <p>References 162</p> <p><b>8 Perovskite and Derivative Compounds as Mixed Ionic–Electronic Conductors 169</b><br /><i>Caroline Pirovano, Aurélie Rolle, and Rose-Noëlle Vannier</i></p> <p>8.1 Introduction 169</p> <p>8.2 Perovskite as Mixed Ionic–Electronic Conductors 170</p> <p>8.2.1 The Perovskite: A Flexible Structure for Mixed Ionic–Electronic Conductivity 170</p> <p>8.2.2 Cobaltites: Among the Best MIEC Materials 173</p> <p>8.2.3 MIEC Electrochemical Performances as SOFC or SOEC Electrodes 173</p> <p>8.3 Conductivity and Oxygen Transport Properties in Mixed Ionic- and Electronic-Conducting Perovskites 176</p> <p>8.3.1 Electrical Conductivity 177</p> <p>8.3.2 Diffusion Coefficients 177</p> <p>8.3.3 Surface Exchange Coefficients 179</p> <p>8.3.4 Perovskite Materials and Related Compounds Oxygen Transport Parameters 180</p> <p>8.4 Conclusions 183</p> <p>References 184</p> <p><b>9 Perovskite and Related Oxides for Energy Harvesting by Thermoelectricity 189</b><br /><i>Sascha Populoh, O. Brunko, L. Karvonen, L. Sagarna, G. Saucke, P. Thiel, M. Trottmann, N. Vogel-Schäuble, and A. Weidenkaff</i></p> <p>9.1 Introduction to Thermoelectricity 189</p> <p>9.2 CaMnO3-Based Compounds 190</p> <p>9.3 EuTiO3 and Related Compounds 196</p> <p>9.4 SrCoO3 and Related Phases 199</p> <p>9.5 ZnO for Thermoelectric Applications 200</p> <p>9.6 Thermoelectric Oxide Modules and Their Characterization 202</p> <p>9.7 Concluding Remarks 204</p> <p>References 204</p> <p><b>10 Piezoelectrics and Multifunctional Composites 211</b><br /><i>Ranjith Ramadurai and Vijayanandhini Kannan</i></p> <p>10.1 History 211</p> <p>10.2 Piezoelectricity: An Introduction 211</p> <p>10.3 Piezoelectric Materials: An Overview 214</p> <p>10.4 Lead-Free Piezoelectrics 215</p> <p>10.4.1 BaTiO3–CaTiO3–BaZrO3 Solid Solutions 216</p> <p>10.4.2 Structural Phase Diagram of BZT–BCT 217</p> <p>10.4.3 Piezoelectric Properties of BCT–BZT 218</p> <p>10.4.4 (Na0.5Bi0.5)TiO3 219</p> <p>10.5 Piezoelectric Polymers 221</p> <p>10.5.1 Polyvinylidene Fluoride 222</p> <p>10.6 Piezoelectric Composites 223</p> <p>10.7 Polymer–Ceramic Hybrid Piezoelectric Composites 225</p> <p>10.8 Multifunctional Piezoelectric Composites 226</p> <p>10.9 Summary 229</p> <p>References 230</p> <p><b>11 Microstructure and Nanoscale Piezoelectric/Ferroelectric Properties in Ln2Ti2O7 (Ln = Lanthanide) Thin Films with Layered Perovskite Structure 233</b><br /><i>Sébastien Saitzek, ZhenMian Shao, Alexandre Bayart, Pascal Roussel, and Rachel Desfeux</i></p> <p>11.1 Introduction and Overview of Layered Perovskite Structures 233</p> <p>11.2 Ln2Ti2O7 Compounds 236</p> <p>11.2.1 Structural Properties of Ln2Ti2O7 with Ln = Lanthanide 236</p> <p>11.2.2 Synthesis Way 237</p> <p>11.2.3 Scope and Properties of the Ln2Ti2O7 Oxides 238</p> <p>11.3 Growth and Structural Characterization of Ln2Ti2O7 Thin Films 239</p> <p>11.3.1 Growth on (100)-Oriented SrTiO3 Substrates 239</p> <p>11.3.2 Growth on (110)-Oriented SrTiO3 Substrates 242</p> <p>11.3.3 Limit of Stability of the Layered Perovskite Structure 243</p> <p>11.4 Piezo- and Ferroelectric Properties of Ln2Ti2O7 Thin Films 244</p> <p>11.4.1 Experimental Setup 244</p> <p>11.4.2 Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (110)-Oriented SrTiO3 Substrates 246</p> <p>11.4.3 Ln2Ti2O7 (Ln = La, Pr, and Nd) Thin Films Grown on (100)-Oriented SrTiO3 Substrates 247</p> <p>11.4.4 Metastable Ln2Ti2O7 (Ln = Sm, Eu, and Gd) Thin Films Grown on (110)-Oriented SrTiO3 Substrates 249</p> <p>11.5 Conclusion 250</p> <p>Acknowledgments 251</p> <p>References 251</p> <p><b>12 Pigments Based on Perovskite 259</b><br /><i>Matteo Ardit, Giuseppe Cruciani, Michele Dondi, and Chiara Zanelli</i></p> <p>12.1 Introduction 259</p> <p>12.2 Perovskite Pigments 259</p> <p>12.2.1 Red and Orange 261</p> <p>12.2.2 Yellow 261</p> <p>12.2.3 Brown to Light Brown 262</p> <p>12.2.4 Magenta to Pink 263</p> <p>12.2.5 Blue 263</p> <p>12.2.6 Black 263</p> <p>12.3 (Y, REE) Aluminate Perovskites: Crystal Chemistry and Structural Principles 263</p> <p>12.3.1 Crystal Structure of Ideal and Distorted Ternary ABO3 Perovskites 263</p> <p>12.3.2 Lattice Parameters, A Site Coordination, and Bond Valence Analysis in (Y,REE) Orthoaluminates 264</p> <p>12.3.3 Tilting of Octahedral Framework and Tolerance Factor 268</p> <p>12.4 Chromium Incorporation: Basic Concepts and the YAlO3–YCrO3 Case Study 269</p> <p>12.4.1 Local Bond Distances 269</p> <p>12.4.2 Structural Relaxation Coefficient 270</p> <p>12.4.3 Comparison with Other Al–Cr Solid Solutions 271</p> <p>12.4.4 Polyhedral Bond Valence Method 272</p> <p>Case Study 274</p> <p>12.5 Origin of Color in (Y, REE) Orthoaluminates 279</p> <p>References 284</p> <p><b>13 Electrolyte Materials 289</b><br /><i>Viorica Parvulescu</i></p> <p>13.1 Introduction 289</p> <p>13.2 Properties of Solid Electrolyte Materials 290</p> <p>13.2.1 Synthesis Methods and Properties of Mixed Oxides Electrolytes 290</p> <p>13.2.2 The Crystalline Phases and Conductivity 294</p> <p>13.3 Mixed Oxides with Ionic Conductivity 295</p> <p>13.3.1 Solid Electrolytes Based on ZrO2 296</p> <p>13.3.2 Solid Electrolytes Based on CeO2 298</p> <p>13.4 Mixed Oxides with Mixed Conductivity 301</p> <p>13.5 Applications of Mixed Oxides as Electrolytes and Mixed Conductors 303</p> <p>13.6 Conclusions 306</p> <p>References 306</p> <p><b>14 CO2 Capture Using Dense Perovskite Membranes: Permeation Models 311</b><br /><i>Marc Pera-Titus</i></p> <p>14.1 MIEC Membranes for Gas Separation 311</p> <p>14.2 Background for Mass Transfer Modeling in Perovskite Membranes 312</p> <p>14.3 Gas Permeation Models for Perovskite Membranes 315</p> <p>14.3.1 Single-Phase Perovskite Membranes 316</p> <p>14.3.1.1 Models for O2 Semipermeation 318</p> <p>14.3.1.2 Models for H2 Semipermeation 322</p> <p>14.3.2 Dual-Phase Perovskite Membranes 325</p> <p>14.3.2.1 Models for H2 Semipermeation within Supported Ni/Perovskite DFMs 326</p> <p>14.3.2.2 Models for H2 Semipermeation in Ni-Cermets DFMs 326</p> <p>14.3.2.3 Models for CO2 Semipermeation in Infiltrated MC/Perovskite DPMs 327</p> <p>14.4 Measurement of Diffusion and Surface Exchange Coefficients 329</p> <p>14.4.1 Semipermeation Coupled to Electrical Potential Measurements 329</p> <p>14.4.2 Isotopic Exchange Depth Profile (IEDP) 331</p> <p>14.4.3 Electrical Conductivity Relaxation (ECR) 333</p> <p>14.4.4 Electrochemical Impedance Spectroscopy (EIS) 333</p> <p>14.4.5 Diffusion and Surface Exchange Coefficients: Structure–Property Correlations 334</p> <p>14.5 Conclusions 334</p> <p>Glossary 335</p> <p>Greek Symbols 336</p> <p>Subscripts 336</p> <p>Superscripts 337</p> <p>Acronyms 337</p> <p>References 337</p> <p><b>15 Introduction to Rational Molecular Modeling Approaches 343</b><br /><i>Randy Jalem and Masanobu Nakayama</i></p> <p>15.1 Introduction 343</p> <p>15.2 Theoretical Background on Ab Initio Calculation 343</p> <p>15.2.1 Brief Review of Elementary Quantum Chemistry 343</p> <p>15.2.2 Density Functional Theory 346</p> <p>15.3 Simulation Model Construction 347</p> <p>15.4 Electronic Structure 349</p> <p>15.5 Ionic Transport 351</p> <p>15.6 Atomic Arrangement, Phase Stability, and Transition 354</p> <p>15.7 Conclusions and Outlook 359</p> <p>References 360</p> <p><b>Volume 2</b></p> <p><b>Part Two Perovskite and Related Mixed Oxides in Catalysis: From the Structure to the Catalytic Properties 367</b></p> <p><b>16 Methane Combustion on Perovskites 369</b><br /><i>Athanasios Ladavos and Philippos Pomonis</i></p> <p>16.1 Perovskites as a Diverse and Active Class of Materials 369</p> <p>16.1.1 Structural Diversity, Tolerance Factor, and Thermodynamic Stability 370</p> <p>16.2 Mixed Valences in Perovskites 371</p> <p>16.2.1 Mixed Valences Due to Anion Deficiencies 371</p> <p>16.2.2 Mixed Valences Due to Isostructural Substitution of Cations 373</p> <p>16.3 The Reversed Uptake of Oxygen and Its Different Sources 373</p> <p>16.4 The Mechanism of Methane Combustion 376</p> <p>16.5 Kinetics of Methane Combustion 378</p> <p>16.5.1 Rideal–Eley kinetics 379</p> <p>16.5.2 First-Order Kinetics 380</p> <p>16.5.3 The Power Law Kinetics 384</p> <p>16.5.4 The Two Term Kinetics 385</p> <p>16.6 Conclusions 386</p> <p>Acknowledgments 387</p> <p>References 387</p> <p><b>17 Total Oxidation of Volatile Organic Compounds 389</b><br /><i>Vasile I. Parvulescu</i></p> <p>17.1 Introduction 389</p> <p>17.2 Specificity of Perovskites for Total Oxidation of VOCs 391</p> <p>17.3 Morphology of Perovskites Investigated for Total Oxidation of VOCs 395</p> <p>17.4 Total Oxidation of VOCs under Thermal Activation Conditions 397</p> <p>17.5 Total Oxidation of Light Hydrocarbons 399</p> <p>17.6 Total Oxidation of Oxygenated Organic Compounds 401</p> <p>17.7 Total Oxidation of Halogenated Organic Compounds 402</p> <p>17.8 Total Oxidation under Plasma Activation Conditions in Gas 404</p> <p>17.9 Photocatalytic Destruction of VOC 406</p> <p>17.10 Conclusions 407</p> <p>References 408</p> <p><b>18 Total Oxidation of Heavy Hydrocarbons and Aromatics 413</b><br /><i>Vasile I. Parvulescu and Pascal Granger</i></p> <p>18.1 Introduction 413</p> <p>18.2 Perovskites and Oxygen Vacancy 414</p> <p>18.3 Total Oxidation under Thermal Activation Conditions 416</p> <p>18.4 Total Oxidation of Aromatic Hydrocarbons 417</p> <p>18.5 Total Oxidation of Polycyclic Aromatic Hydrocarbons 424</p> <p>18.6 Total Oxidation of Soot 425</p> <p>18.7 Total Oxidation of Halogenated Hydrocarbons 426</p> <p>18.8 Total Oxidation under Plasma Activation Conditions 428</p> <p>18.9 Total Oxidation of Aromatics 429</p> <p>18.10 Total Oxidation of Soot 431</p> <p>18.11 Conclusions 431</p> <p>References 432</p> <p><b>19 Progresses on Soot Combustion Perovskite Catalysts 437</b><br /><i>Agustín Bueno-López</i></p> <p>19.1 Introduction 437</p> <p>19.2 Particular Aspects of the Soot Combustion Reactions 438</p> <p>19.3 Soot Combustion Perovskite Catalysts: Effect of Partial Substitution of Cations in the Perovskite Oxide 439</p> <p>19.4 Kinetic and Mechanistic Studies 442</p> <p>19.5 Three-Dimensionally Ordered Macroporous Soot Combustion Perovskite Catalysts 444</p> <p>19.6 Study of Soot Combustion Perovskite Catalysts in Real Diesel Exhausts 445</p> <p>19.7 Microwave-Assisted Perovskite-Catalyzed Soot Combustion 446</p> <p>19.8 Deactivation of Soot Combustion Catalysts by Perovskite Structure Formation 446</p> <p>19.9 Conclusions 446</p> <p>Acknowledgments 447</p> <p>References 447</p> <p><b>20 Low-Temperature CO Oxidation 451</b><br /><i>Oscar H. Laguna, Luis F. Bobadilla, Willinton Y. Hernández, and Miguel Angel Centeno</i></p> <p>20.1 Overview 451</p> <p>20.2 Low-Temperature CO Oxidation Reaction 453</p> <p>20.2.1 LaBO3-Type Perovskites 454</p> <p>20.2.3 Noble Metal–Perovskite Hybrid Materials 456</p> <p>20.3 H2 Purification-Related CO Oxidations: Water-Gas Shift (WGS) and PROX Reactions 459</p> <p>20.3.1 Perovskites for the Water-Gas Shift Reaction 460</p> <p>20.3.2 Perovskites for the Preferential CO Oxidation in the Presence of H2 (PROX) 464</p> <p>20.4 Concluding Remarks 468</p> <p>Acknowledgments 468</p> <p>References 468</p> <p><b>21 Liquid-Phase Catalytic Oxidations with Perovskites and Related Mixed Oxides 475</b><br /><i>Viorica Parvulescu</i></p> <p>21.1 Introduction 475</p> <p>21.2 Active Sites and Oxidants 476</p> <p>21.3 Catalytic Reactions with Green Oxidants 480</p> <p>21.3.1 Perovskites Catalysts 480</p> <p>21.3.2 Microporous Mixed Oxide Catalysts 483</p> <p>21.3.3 Mesoporous Mixed Oxide Catalysts 486</p> <p>21.4 Heterogeneous Photo-Fenton Oxidation 488</p> <p>21.4.1 Photo-Fenton Reactions with Perovskites 490</p> <p>21.4.2 Photo-Fenton Reactions with Porous Mixed Oxides 491</p> <p>21.5 Photocatalytic Ozonation Reactions 492</p> <p>21.6 Conclusions 493</p> <p>References 494</p> <p><b>22 Dry Reforming of Methane 501</b><br /><i>Catherine Batiot-Dupeyrat</i></p> <p>22.1 Introduction 501</p> <p>22.2 LaNiO3 as Catalyst Precursor for Carbon Dioxide Reforming of Methane 502</p> <p>22.5 Perovskite as Support of Active Sites in the Dry Reforming of Methane 510</p> <p>22.6 Supported Perovskite for Dry Reforming of Methane 510</p> <p>22.7 Conclusion 512</p> <p>References 512</p> <p><b>23 Recent Progress in Oxidative Conversion of Methane to Value-Added Products 517</b><br /><i>Evgenii V. Kondratenko and Uwe Rodemerck</i></p> <p>23.1 Methane: Sources and Feedstock for Chemical Industry 517</p> <p>23.2 Oxidative Coupling of Methane 519</p> <p>23.2.1 OCM Reactors and Modes of Operation 520</p> <p>23.2.2 OCM Process Concepts 522</p> <p>23.2.3 Strategies for Developing New OCM Catalysts 526</p> <p>23.3 Methane to Methanol and Its Derivatives 528</p> <p>23.4 Methane to Acetic Acid 530</p> <p>23.5 Conclusions 532</p> <p>References 533</p> <p><b>24 Steam Reforming of Alcohols from Biomass Conversion for H2 Production 539</b><br /><i>Florence Epron, Nicolas Bion, Daniel Duprez, and Catherine Batiot-Dupeyrat</i></p> <p>24.1 Introduction 539</p> <p>24.2 Generalities on Alcohol Steam Reforming 539</p> <p>24.2.1 Types of Alcohols Used 539</p> <p>24.2.2 Reactions Involved and Thermodynamic Data 540</p> <p>24.2.2.1 Ethanol Steam Reforming 540</p> <p>24.2.2.2 Glycerol Steam Reforming 542</p> <p>24.3 Catalysts 544</p> <p>24.3.1 Types of Catalysts Used 544</p> <p>24.3.1.1 Noble Metal Catalysts 545</p> <p>24.3.1.2 Non-Noble Metal Catalysts 545</p> <p>24.3.1.3 Effect of the Support 546</p> <p>24.3.2 Why Perovskite-Type Catalysts are Good Candidates? 547</p> <p>24.3.3 General Assessement 549</p> <p>24.4 Catalytic Performances of Perovskite-Type Catalysts for H2 Production from Alcohols 549</p> <p>24.4.1 Ethanol Steam Reforming 549</p> <p>24.4.2 Glycerol Steam Reforming 551</p> <p>24.5 Summary and Outlook 552</p> <p>References 553</p> <p><b>25 Three-Way Catalysis 559</b><br /><i>Ioannis V. Yentekakis and Michalis Konsolakis</i></p> <p>25.1 Three-Way Catalytic Converters (TWCs): An Introduction 559</p> <p>25.2 Three-Way Catalytic Materials: Potentials/Aptitudes, Limitations, and Future Trends 563</p> <p>25.3 Three-Way Catalysis by Ceria and Ceria-Based Mixed Oxides 565</p> <p>25.3.1 CO Oxidation 567</p> <p>25.3.2 Oxidation of Hydrocarbons 568</p> <p>25.3.3 NO Reduction by CO or HCs 568</p> <p>25.3.4 Simulated Stoichiometric Exhaust Conditions 568</p> <p>25.4 Application of Perovskites in Exhaust Emission Control 570</p> <p>25.4.1 Model Reactions 572</p> <p>25.4.1.1 CO Oxidation 572</p> <p>25.4.1.2 N2O Decomposition 573</p> <p>25.4.1.3 NO Reduction by CO 573</p> <p>25.4.1.4 NO Reduction by Propene 575</p> <p>25.4.2 Simulated Exhaust Conditions 576</p> <p>25.5 Conclusions and Guidelines 579</p> <p>References 580</p> <p><b>26 Lean Burn DeNOx Applications: Stationary and Mobile Sources 587</b><br /><i>Angelos M. Efstathiou and Vasilis N. Stathopoulos</i></p> <p>26.1 Scope 587</p> <p>26.2 Introduction 588</p> <p>26.2.1 Hydrogen-Selective Catalytic Reduction (H2-SCR) 588</p> <p>26.2.2 Lean NOx After Treatment of Diesel Engine Emissions 590</p> <p>26.3 Case Studies 594</p> <p>26.3.1 H2-SCR of NO 594</p> <p>26.3.2 Lean NOx Trap 601</p> <p>26.3.3 Simultaneous NOx Reduction and Soot Oxidation 605</p> <p>26.4 Concluding Remarks 605</p> <p>References 606</p> <p><b>27 Catalytic Abatement of N2O from Stationary Sources 611</b><br /><i>Pascal Jean-Philippe Dacquin and Christophe Dujardin</i></p> <p>27.1 Introduction 611</p> <p>27.2 The Abatement of N2O From Nitric Acid Plant: A Case Study 613</p> <p>27.2.1 Different Possible Scenarios 613</p> <p>27.2.2 High-Temperature Decomposition of N2O 615</p> <p>27.2.3 Medium-Temperature Decomposition of N2O 618</p> <p>27.2.4 End-of-Pipe Technologies 622</p> <p>27.3 Conclusion 626</p> <p>References 627</p> <p><b>28 Perovskites as Catalyst Precursors for Fischer–Tropsch Synthesis 631</b><br /><i>Anne-Cécile Roger and Alain Kiennemann</i></p> <p>28.1 Introduction 631</p> <p>28.2 Alcohols Synthesis 632</p> <p>28.2.1 Methanol Synthesis 633</p> <p>28.2.2 Higher Alcohols Synthesis 638</p> <p>28.2.2.1 Ethanol Synthesis 638</p> <p>28.2.2.2 C1–Cn Alcohols Synthesis 639</p> <p>28.3 Hydrocarbons Synthesis 644</p> <p>28.4 Conclusions 654</p> <p>References 654</p> <p><b>29 FexZr1 − xO2 and Ce1 − xFexO2 − δ Mixed Oxide Catalysts: DRIFTS Analyses of Synthesis Gas and TPSR of Propane Dry Reforming 659</b><br /><i>Rodrigo Brackmann, Ricardo Scheunemann, Andre Luiz Alberton, and Martin Schmal</i></p> <p>29.1 Introduction 659</p> <p>29.2.1.1 CO Adsorption 661</p> <p>29.2.1.2 Adsorption of CO+O2+He 663</p> <p>29.2.1.3 Adsorption of CO+O2+H2+He 664</p> <p>29.2.2.1 Thermodynamics 667</p> <p>29.2.2.2 Temperature-Programmed Surface Reaction 667</p> <p>29.3 Conclusions 671</p> <p>References 672</p> <p><b>30 Photocatalytic Assisted Processes 675</b><br /><i>Bogdan Cojocaru and Vasile I. Parvulescu</i></p> <p>30.1 Introduction 675</p> <p>30.2 Titanates 677</p> <p>30.2.1 Calcium Titanates 677</p> <p>30.2.2 Strontium Titanates 678</p> <p>30.2.3 Barium Titanates 683</p> <p>30.2.4 Lanthanum Titanates 684</p> <p>30.2.5 Iron Titanates 685</p> <p>30.2.6 Other Titanates 685</p> <p>30.2.7 Bismuth Titanates 686</p> <p>30.3 Ferrites 686</p> <p>30.3.1 Calcium Ferrites 686</p> <p>30.3.2 Strontium Ferrites 686</p> <p>30.3.3 Barium Ferrites 687</p> <p>30.3.4 Yttrium Ferrites 687</p> <p>30.3.5 Rare Earth Ferrites 688</p> <p>30.3.6 Other Ferrites 689</p> <p>30.4 Conclusions 690</p> <p>References 690</p> <p><b>Part Three Future Prospects from Synthesis to Reactor Design 699</b></p> <p><b>31 Mesoporous TM Oxide Materials by Surfactant-Assisted Soft Templating 701</b><br /><i>Altug S. Poyraz, Yongtao Meng, Sourav Biswas, and Steven L. Suib</i></p> <p>31.1 Introduction 701</p> <p>31.1.1 Use of a Hard Template 701</p> <p>31.1.2 Mesoporous Oxide Materials by Chemical Transformation 702</p> <p>31.1.3 Mesoporous Oxide Materials by Soft Micelle Templating 703</p> <p>31.2 Surfactant and Micelleization 705</p> <p>31.2.1 Types of Surfactants 705</p> <p>31.2.2 Inorganic Additives 705</p> <p>31.2.3 Organic Additives 706</p> <p>31.3 Surfactant–Inorganic (S–I) Interactions 707</p> <p>31.3.1 Thermodynamics of Mesostructured Materials 707</p> <p>31.3.2 Surfactant–Inorganic (ΔGinter) Interactions 707</p> <p>31.3.2.1 Coulombic S–I Interactions for Mesoporous TM Oxides 708</p> <p>31.3.2.2 Covalent S–I Interactions for Mesoporous TM Oxides 709</p> <p>31.3.2.3 S to I Charge Transfer Interactions for Mesoporous TM Oxides 710</p> <p>31.3.2.4 Hydrogen-Bonding (S–I) Interactions for Mesoporous TM Oxides 711</p> <p>31.4 Stability of a Mesoporous TM Oxide 712</p> <p>31.4.1 Template Removal 713</p> <p>31.5 Summary and Future Prospects 713</p> <p>References 714</p> <p><b>32 Development of Robust Mixed-Conducting Membranes with High Permeability and Stability 719</b><br /><i>Tomás Ramirez-Reina, José Luis Santos, Nuria García-Moncada, Svetlana Ivanova, and José Antonio Odriozola</i></p> <p>32.1 Overview 719</p> <p>32.2 Mechanical Robustness 721</p> <p>32.3 Chemical Robustness 725</p> <p>32.3.1 Tolerance Toward CO2 725</p> <p>32.3.2 Tolerance Toward SO2 729</p> <p>32.3.3 Tolerance Toward Reducing Environments 731</p> <p>32.4 Future Applications 732</p> <p>References 732</p> <p><b>33 Catalytic Reactors with Membrane Separation 739</b><br /><i>Fausto Gallucci and Jon Zuniga</i></p> <p>33.1 Introduction 739</p> <p>33.2 Types of Reactors 740</p> <p>33.2.1 Packed Bed Membrane Reactors 740</p> <p>33.2.2 Fluidized Bed Membrane Reactors 744</p> <p>33.3 Membranes for O2 Separation 753</p> <p>33.3.1 Membrane Sealing 755</p> <p>33.4 Membrane Reactors with O2 Membranes 758</p> <p>33.5 Conclusions 768</p> <p>References 768</p> <p><b>34 The Development of Millistructured Reactors for High Temperature and Short Time Contact 773</b><br /><i>Ana Raquel de la Osa, Anne Giroir-Fendler, and Jose Luis Valverde</i></p> <p>34.1 Introduction 773</p> <p>34.2 Classification of Microreactors 774</p> <p>34.2.1 Capacity 775</p> <p>34.2.2 Material 775</p> <p>34.2.3 Reaction Phase 776</p> <p>34.2.3.1 Reactions Involving Liquids 776</p> <p>34.2.3.2 Gas Phase 776</p> <p>34.2.3.3 Catalytic Reactions Involving Three Phases 777</p> <p>34.2.4 Catalytic System 777</p> <p>34.2.5 Other Configurations 778</p> <p>34.3 Applications and Possible Scale-up 778</p> <p>34.3.1 Ammonia Oxidation 779</p> <p>34.3.2 Diesel Particulate Combustion 779</p> <p>34.3.3 Ethylene Oxide Synthesis 779</p> <p>34.3.4 Oxidative Coupling of Methane 779</p> <p>34.3.5 Hydrogenation Reactions 780</p> <p>34.3.5.1 Hydrogenation of Benzene to Cyclohexene 780</p> <p>34.3.5.2 Hydrogenation of Cyclohexene 780</p> <p>34.3.6 Dehydrogenation Reactions 780</p> <p>34.3.6.1 Dehydrogenation of Methylcyclohexane 780</p> <p>34.3.6.2 Dehydrogenation of Cyclohexane 780</p> <p>34.3.6.3 Oxidative Dehydrogenation of Methanol 781</p> <p>34.3.6.4 Dehydrogenation of Alkanes 781</p> <p>34.3.7 Synthesis Gas Production 781</p> <p>34.3.7.1 Steam Methane Reforming 781</p> <p>34.3.7.2 Partial Oxidation of Methane 781</p> <p>34.3.8 Fuel Production 781</p> <p>34.3.8.1 Direct Partial Oxidation of Methane to C1 Oxygenates 781</p> <p>34.3.8.2 Total Syngas Methanation to Synthetic Natural Gas 782</p> <p>34.3.8.3 Fischer–Tropsch Synthesis 782</p> <p>34.3.8.4 Synthesis of Methanol and Ethanol 783</p> <p>34.3.8.5 Synthesis of Dimethyl Ether 783</p> <p>34.3.8.6 Biodiesel Production 783</p> <p>34.3.8.7 Hydrogen Production 784</p> <p>34.4 Simulation Case 785</p> <p>34.5 Conclusions 789</p> <p>References 791</p> <p><b>35 Single Brick Solution for Lean-Burn DeNOx and Soot Abatement 797</b><br /><i>Sonia Gil, Jesus Manuel Garcia-Vargas, Leonarda F. Liotta, Philippe Vernoux, and Anne Giroir-Fendler</i></p> <p>35.1 Introduction 797</p> <p>35.2 Diesel Posttreatment 799</p> <p>35.2.1 Specificity of Diesel Engine 799</p> <p>35.2.2 Diesel Unburned Hydrocarbon and Carbon Monoxide Oxidation 799</p> <p>35.2.3 Treatment of Soot 801</p> <p>35.2.4 DeNOx Reduction 803</p> <p>35.2.4.1 Urea and NH3 Selective Catalytic Reduction 804</p> <p>35.2.4.2 Single Brick Solution for Lean-Burn DeNOx and Soot Abatement 807</p> <p>35.3 Conclusion 810</p> <p>References 811</p> <p><b>36 Tools for the Kinetics of Fast Reactions 817</b><br /><i>Gregory Biausque, Marie Rochoux, David Farrusseng, and Yves Schuurman</i></p> <p>36.1 Introduction 817</p> <p>36.2 Oxygen Interaction 817</p> <p>36.2.1 Oxygen Nonstoichiometry 818</p> <p>36.2.2 Oxygen Isotopic Exchange Techniques 819</p> <p>36.2.3 Secondary Ion Mass Spectrometry 819</p> <p>36.2.4 Steady-State Isotopic Transient Oxygen Exchange 819</p> <p>36.2.5 Case Study: Prediction of the Oxygen Permeation Flux through a Thin Ceramic Membrane from Powder Measurements 820</p> <p>36.2.6 Conclusions 823</p> <p>36.3 Measurement of Kinetics of Fast Reactions 823</p> <p>36.3.1 Annular Reactor 824</p> <p>36.3.2 Modeling of Annular Reactors 825</p> <p>36.3.3 Case Study: Kinetics of High-Temperature Ammonia Oxidation in an Annular Reactor 827</p> <p>36.3.4 TAP Reactor 830</p> <p>36.3.5 Case Study: TAP Experiments for Ammonia Oxidation over LaCoO3 831</p> <p>36.3.6 Conclusions 833</p> <p>References 833</p> <p><b>37 Perovskites as Oxygen Carrier-Transport Materials for Hydrogen and Carbon Monoxide Production by Chemical Looping Processes 839</b><br /><i>Lori Nalbandian and Vassilis Zaspalis</i></p> <p>37.1 Introduction 839</p> <p>37.1.1 Chemical Looping Combustion 839</p> <p>37.1.2 Oxygen Carriers 840</p> <p>37.1.3 Chemical Looping Reforming 841</p> <p>37.1.4 Chemical Looping Water Splitting and Chemical Looping Carbon Dioxide Splitting 842</p> <p>37.1.5 Thermochemical Water or Carbon Dioxide Splitting 842</p> <p>37.1.6 Chemical Looping in Dense Membrane Reactors 843</p> <p>37.2 Perovskites for H2 and CO Production by Chemical Looping Processes 844</p> <p>37.2.1 Powdered Perovskites: Chemical Looping Processes 845</p> <p>37.2.1.1 Reduction by an Oxidizable Compound 845</p> <p>37.2.1.2 Reduction by Solar Radiation 849</p> <p>37.2.2 Perovskites as Dense Membranes 850</p> <p>37.2.3 Perovskites Used as Supports 856</p> <p>37.3 Conclusions 857</p> <p>References 857</p> <p><b>38 Perovskites and Related Mixed Oxides for SOFC Applications 863</b><br /><i>Steven S.C. Chuang and Long Zhang</i></p> <p>38.1 Introduction 863</p> <p>38.2 Fuel Cells 864</p> <p>38.3 Perovskites 870</p> <p>38.3.1 Perovskite as a Cathode Material 870</p> <p>38.3.2 Low-Temperature Cathodes 873</p> <p>38.4 Anode Materials 874</p> <p>38.5 Summary and Future R&D 875</p> <p>References 876</p> <p><b>39 Perovskite Membranes for CO2 Capture: Current Trends and Future Prospects 881</b><br /><i>Marc Pera-Titus and Anne Giroir-Fendler</i></p> <p>39.1 Introduction 881</p> <p>39.2 Pre-, Post-, and Oxy-combustion CO2 Capture: High- versus Low-Temperature Membrane Technologies 882</p> <p>39.2.1 Low-Temperature Membranes: Porous Inorganic Membranes 883</p> <p>39.2.2 High-Temperature Membranes: Mixed Ionic–Electronic Conducting Membranes Based on Perovskites 885</p> <p>39.3 R&D Membrane Concepts for High-Temperature CO2 Capture 889</p> <p>39.3.1 Perovskite Membranes for O2 Separation 889</p> <p>39.3.1.1 O2 Separation and Combustion 889</p> <p>39.3.1.2 Gasification Systems Combined with Combustion 890</p> <p>39.3.2 Perovskite Membranes for H2 Separation and Steam Dosing 891</p> <p>39.3.3 Perovskite-Containing Membranes for CO2 Separation 892</p> <p>39.4 Recent Membrane Developments for CO2 Capture 893</p> <p>39.4.1 General Criteria for Membrane Design 893</p> <p>39.4.2 Perovskite Membranes for Selective O2 Permeation 895</p> <p>39.4.2.1 Co-Containing Perovskites 895</p> <p>39.4.2.2 Co-Free Perovskites 901</p> <p>39.4.2.3 Dual-Phase Membranes 902</p> <p>39.4.3 Perovskite Membranes for Selective H2 Permeation 904</p> <p>39.4.3.1 Ce-Containing Perovskites (Cerates) 904</p> <p>39.4.3.2 Dual-Phase Metal Cerates: Cermets 905</p> <p>39.4.3.3 Ce-Free Formulations 909</p> <p>39.4.4 Molten Carbonate/Perovskite Membranes for Selective CO2 Permeation 910</p> <p>39.5 Conclusions and Perspectives 913</p> <p>Glossary 915</p> <p>Greek Symbols 915</p> <p>Subscripts 915</p> <p>Acronyms 915</p> <p>References 916</p> <p>Index 929</p>
Pascal Granger is Head of the Catalysis and Solid State Chemistry Department at the University of Lille, France. He obtained his PhD in Applied Chemistry from the University of Poitiers, France, and did postdoctoral research at the University of Lille before he became Full Professor there in 2003. Pascal Granger investigates the mechanisms and kinetics of heterogeneous catalytic reactions and is involved in the development of spectroscopic characterizations of DeNOx and DeN2O abatement processes. He is author and co-author of 85 publications in refereed international journals and of one book.<br> <br> Vasile I. Parvulescu is Director of the Department of Organic Chemistry, Biochemistry and Catalysis at the University of Bucharest, Romania. He received his PhD in Chemistry from the University of Bucharest for a work on the selectivity of bi- and multi-metal catalysts in hydrogenation of aromatic hydrocarbons. After several years as senior researcher at the Institute for Non-Ferrous and Rare Metals in Bucharest, he rejoined the University of Bucharest in 1992 where he became full professor in 1999. His current interest concerns the study of heterogeneous catalysts for green and fine chemistry as well as for environmental protection. He authored more than 240 papers, 25 patents and 4 books.<br> <br> Serge Kaliaguine is Professor in the Department of Chemical Engineering at the University of Laval in Quebec, Canada. He has developed a strong expertise in the fields of zeolites and mesoporous molecular sieves and perovskites and other mixed oxides for which he developed a novel reactive grinding technology for industrial applications. He is also involved in the preparation of composite proton conducting membranes. Serge Kaliaguine is co-author of more than 300 peer-reviewed publications in the field of applied chemistry, chemical engineering and polymer chemistry.<br> <br> Wilfrid Prellier is Senior CNRS Researcher in the CRISMAT Laboratory at the University of Caen, France. After his PhD in Chemistry he held postdoctoral positions at the University of Orsay, France, and at the University of Maryland, USA. His fields of interest are thin film growth and material physics of complex oxides, oxide heterostructures and multilayers. He is author and co-author of more than 180 publications in refereed international journals and gave more than 50 invited talks at international conferences. In 2013 Wilfrid Prellier received the prize of the Solid State Division from the French Chemical Society.<br>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €