Details

Perovskite Photovoltaics and Optoelectronics


Perovskite Photovoltaics and Optoelectronics

From Fundamentals to Advanced Applications
1. Aufl.

von: Tsutomu Miyasaka

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.11.2021
ISBN/EAN: 9783527826384
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Perovskite Photovoltaics and Optoelectronics</b> <p><b>Discover a one-of-a-kind treatment of perovskite photovoltaics </b> <p>In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. <p>In <i>Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications,</i> distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. <p>This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: <ul><li>A thorough introduction to halide perovskite materials, their synthesis, and dimension control </li> <li>Comprehensive explorations of the photovoltaics of halide perovskites and their historical background </li> <li>Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors </li> <li>In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells</li></ul> <p>Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, <i>Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications</i> is also an indispensable resource for solid state chemists and device/electronics engineers.
<p>Preface xiii</p> <p><b>1 Research Background and Recent Progress of Perovskite Photovoltaics 1<br /> </b><i>Tsutomu Miyasaka and Ajay K. Jena</i></p> <p>1.1 Introduction 1</p> <p>1.2 History of Halide Perovskite Photovoltaics 5</p> <p>1.2.1 Discovery of the Perovskite Crystal Form 5</p> <p>1.2.2 Discovery of Metal Halide Perovskites 6</p> <p>1.2.3 Beginning of Halide Perovskite Photovoltaics 8</p> <p>1.3 Semiconductor Properties of Organo-Lead Halide Perovskites 11</p> <p>1.4 Working Principle of Perovskite Photovoltaics 15</p> <p>1.5 Compositional Engineering for the Halide Perovskite Absorbers 18</p> <p>1.6 Strategies to Stabilize Halide Perovskite Solar Cells 20</p> <p>1.6.1 Bridging the Gap Between Efficiency and Stability 20</p> <p>1.6.2 Enhancing Intrinsic Stability of Halide Perovskites 22</p> <p>1.6.3 External and Environmental Stability 24</p> <p>1.7 Progress of All inorganic and Lead-Free Perovskites 34</p> <p>1.8 Enhancing Efficiency of Low-Cost Tandem Solar Cells 39</p> <p>1.9 Space Applications of the Perovskite Solar Cells 42</p> <p>1.10 Conclusion and Perspectives 44</p> <p>References 45</p> <p><b>2 Halide Perovskite Materials, Structural Dimensionality, and Synthesis 61<br /> </b><i>Yuko Takeoka and David B. Mitzi</i></p> <p>2.1 Three-Dimensional and Low-Dimensional Semiconductors: Organic-Inorganic Perovskites 61</p> <p>2.2 Perovskite-Type Metal Halide Compounds 62</p> <p>2.3 Preparation of Two- to Three-Dimensional Lead Halide-Based Perovskite Compounds 66</p> <p>2.3.1 Spin-Coating Method for Synthesis 67</p> <p>2.3.2 Vacuum Evaporation Method 70</p> <p>2.3.3 Two-Step Deposition Method 72</p> <p>2.3.4 Self-Intercalation Method 73</p> <p>2.3.5 Layer-by-Layer Self-Assembly Method 74</p> <p>2.3.6 Langmuir&ndash;Blodgett Method 75</p> <p>2.4 Conclusion 75</p> <p>References 76</p> <p><b>3 Microstructures and Grain Boundaries of Halide Perovskite Thin Films&nbsp;81<br /> </b><i>Yuanyuan Zhou and Nitin P. Padture</i></p> <p>3.1 Introduction 81</p> <p>3.2 Microstructure Characteristics 82</p> <p>3.2.1 The Nature of Grain Boundaries (GBs) 82</p> <p>3.2.2 Grain Size and Distribution 86</p> <p>3.2.3 Crystallographic Texture 87</p> <p>3.3 Microstructural Evolution in HP Thin Films 88</p> <p>3.3.1 Genesis of Microstructure 88</p> <p>3.3.2 Grain Growth 89</p> <p>3.4 Influence of Microstructures and GBs on Performance and Stability 92</p> <p>3.4.1 Grain Size Effects 92</p> <p>3.4.2 Effects of the Nature of GBs 95</p> <p>3.4.3 Crystallographic Texture Effects 98</p> <p>3.5 Outlook 99</p> <p>Acknowledgments 101</p> <p>References 101</p> <p><b>4 Defect Properties of Halide Perovskites for Photovoltaic Applications 107<br /> </b><i>Zewen Xiao and Yanfa Yan</i></p> <p>4.1 Introduction 107</p> <p>4.2 Defect Properties of ABX<sub>3</sub> Halide Perovskites 108</p> <p>4.2.1 Pb-Based Halide Perovskites 108</p> <p>4.2.1.1 Point Defects 108</p> <p>4.2.1.2 Ideal Grain Boundaries 111</p> <p>4.2.1.3 Ideal Surfaces 113</p> <p>4.2.1.4 Surfaces and Boundaries in Real Thin Films 114</p> <p>4.2.2 Sn-Based Halide Perovskites 115</p> <p>4.2.3 Ge-Based Halide Perovskites 116</p> <p>4.3 Defect Properties of Halide Perovskites Beyond ABX<sub>3 </sub>117</p> <p>4.3.1 A<sub>2</sub>BX<sub>6</sub> Halide Perovskite Derivatives 117</p> <p>4.3.2 A<sub>3</sub>B<sub>2</sub>X<sub>9</sub> Layered Halide Perovskites 118</p> <p>4.3.3 A<sub>2</sub>B(I)B(III)X<sub>6</sub> Halide Double Perovskites 120</p> <p>4.4 Conclusion 123</p> <p>References 123</p> <p><b>5 Physics of Perovskite Solar Cells: Efficiency, Open-Circuit Voltage, and Recombination&nbsp;127<br /> </b><i>Wolfgang Tress</i></p> <p>5.1 Theory 127</p> <p>5.1.1 Power-Conversion Efficiency of a Solar Cell 127</p> <p>5.1.2 The Ideal Solar Cell: Shockley&ndash;Queisser Limit 129</p> <p>5.1.3 Radiative Limit, Reciprocity, and Detailed Balance 132</p> <p>5.1.4 Non-radiative Recombination and Role of Contacts 135</p> <p>5.2 Determining Efficiency and Characterizing Recombination 137</p> <p>5.2.1 The Current Density&ndash;Voltage (<i>J&ndash;V</i>) Curve 137</p> <p>5.2.2 Determination of the Bandgap and the &ldquo;Voltage Deficit&rdquo; 138</p> <p>5.2.3 Electroluminescence 142</p> <p>5.2.4 Photoluminescence 142</p> <p>5.2.5 Transient Photoluminescence 144</p> <p>5.2.6 Electrochemical Impedance Spectroscopy 146</p> <p>5.2.7 Transient Photovoltage Decay and IMVS 148</p> <p>5.2.8 The Ideality Factor 150</p> <p>5.2.9 Space Charge-Limited Currents 152</p> <p>5.3 Recombination in Perovskite Solar Cells: WhatWe Know 152</p> <p>5.3.1 Intrinsic Properties of the Perovskite Crystal 153</p> <p>5.3.1.1 Relatively High Absorption and Fast Radiative Recombination 153</p> <p>5.3.1.2 Shallow Defects and Defect Tolerance 153</p> <p>5.3.1.3 High Dielectric Constant 154</p> <p>5.3.1.4 Low-Frequency Lattice Phonons 154</p> <p>5.3.1.5 Further Explanations for Reduced Recombination 155</p> <p>5.3.2 Impurities 156</p> <p>5.3.3 Grain Boundaries 156</p> <p>5.3.4 Interfaces: Between Alignment and Passivation 157</p> <p>5.3.5 Mobile Ions 159</p> <p>5.4 Summary and Outlook 160</p> <p>Acknowledgments 161</p> <p>References 161</p> <p><b>6 Ionic/Electronic Conduction and Capacitance of Halide Perovskite Materials&nbsp;173<br /> </b><i>Juan Bisquert, Germ&agrave; Garcia-Belmonte, and Antonio Guerrero</i></p> <p>6.1 Introduction 173</p> <p>6.2 Overview 174</p> <p>6.3 Carrier Transport 176</p> <p>6.3.1 General Determination of Transport Coefficients, Diffusion Coefficient, and Mobility 176</p> <p>6.3.2 Mixed Ionic/Electronic Conduction and Time Constants 176</p> <p>6.3.3 Measurement of Ionic Conductivity by Galvanostatic Transient Method 177</p> <p>6.3.4 Measurement of Ionic Diffusion by Impedance Spectroscopy 179</p> <p>6.3.5 Ionic Drift Causes Suppression of Luminescence 181</p> <p>6.4 Interpretation of Capacitances in Semiconductor Devices 183</p> <p>6.4.1 Dielectric Relaxation 184</p> <p>6.4.2 Chemical Capacitance 184</p> <p>6.4.3 Electrode Polarization 185</p> <p>6.4.4 Depletion Capacitance at the Schottky Barrier 185</p> <p>6.4.5 Capacitance Associated to Defect Levels 186</p> <p>6.5 Surface Polarization and Capacitances of MHP 186</p> <p>6.5.1 General Properties of the Capacitance of MHP 186</p> <p>6.5.2 Complexity of Mott&ndash;Schottky Analysis 191</p> <p>6.5.3 Measurement of Trap Density 192</p> <p>6.6 Impedance Spectroscopy and the Equivalent Circuit Model 194</p> <p>6.6.1 Interpretation of Equivalent Circuits 194</p> <p>6.6.2 Negative Capacitance Phenomena 197</p> <p>6.6.3 Application of IS Model to Understanding of Memory Effects 199</p> <p>6.7 Intensity-Modulated Photocurrent Spectroscopy 200</p> <p>6.8 Dynamic Response in Time Transient Methods 203</p> <p>6.8.1 Time Transients of Photovoltage and Charge&ndash;Discharge Methods 203</p> <p>6.8.2 Charge&ndash;Discharge Methods 205</p> <p>6.8.3 Significance of Surface Charging in MHP 205</p> <p>6.9 Conclusions 207</p> <p>References 207</p> <p><b>7 HysteresisofI&ndash;V Performance: Its Origin and Engineering for Elimination&nbsp;215<br /> </b><i>Seul-Gi Kim and Nam-Gyu Park</i></p> <p>7.1 Introduction 215</p> <p>7.2 Hysteresis in Current&ndash;Voltage Performance 216</p> <p>7.3 Material and Structure Design to Reduce Hysteresis 219</p> <p>7.3.1 Grain Boundary Engineering 219</p> <p>7.3.2 Interfacial Engineering 220</p> <p>7.3.3 Defect Engineering 221</p> <p>7.4 Effect of Alkali Cation Doping 223</p> <p>7.4.1 Reduction in Hysteresis by KI Doping: A Universal Approach 223</p> <p>7.4.2 Passivation Effect of Excess KI 225</p> <p>7.4.3 Location of Potassium Ion in Perovskite 226</p> <p>7.4.4 In situ Photoluminescence (PL) as a Tool to Measure Ion Migration Kinetics 227</p> <p>7.5 Summary 229</p> <p>References 230</p> <p><b>8 High-Efficiency Solar Cells with Polyelemental, Multicomponent Perovskite Materials&nbsp;233<br /> </b><i>Somayeh Gholipour, Yaser Abdi, and Michael Saliba</i></p> <p>8.1 Introduction 233</p> <p>8.2 Polyelemental, Multicomponent Engineering 235</p> <p>8.2.1 Single-Cation Perovskites 236</p> <p>8.2.2 Double-Cation Perovskites: Stabilizing the Black Phase 237</p> <p>8.2.3 Triple-Cation Perovskites: Stable and Reproducible Devices 238</p> <p>8.2.4 Quadruple-Cation Perovskite: Improvement of Long-Term Device Stability 239</p> <p>8.2.5 Methylammonium-Free Perovskite: Staying in the Black Phase with Fewer Components 240</p> <p>8.3 Conclusions 242</p> <p>References 243</p> <p><b>9 All-Inorganic Perovskite Photovoltaics&nbsp;247<br /> </b><i>Ajay K. Jena, Zhanglin Guo, and Tsutomu Miyasaka</i></p> <p>9.1 Introduction 247</p> <p>9.2 All-Inorganic Lead Halide Perovskites 249</p> <p>9.2.1 Cesium Lead Iodide (CsPbI<sub>3</sub>): Black-Phase Stabilization 249</p> <p>9.2.1.1 Additive Approach 251</p> <p>9.2.1.2 Quantum Dot-Induced Black-Phase Stabilization 252</p> <p>9.2.1.3 Stabilization by Surface Treatment 253</p> <p>9.2.1.4 B-Site Doping 253</p> <p>9.2.2 Cesium Lead Bromide (CsPbBr<sub>3</sub>) 256</p> <p>9.2.3 Cesium Lead Mixed-Halide Perovskites (CsPbI<sub>3</sub>&minus;<sub>x</sub>Br<sub>x</sub>) 257</p> <p>9.3 All-Inorganic Tin Halide Perovskites 267</p> <p>9.3.1 CsSnX<sub>3 </sub>(X = I, Br, Cl) 267</p> <p>9.3.2 Cs<sub>2</sub>SnX<sub>6</sub> (X =I, Br) 269</p> <p>9.4 All-Inorganic Silver-Bismuth Halides 270</p> <p>9.4.1 Cs<sub>2</sub>M<sub>1</sub>(I)M<sub>2</sub>(III)X<sub>6</sub> Double Perovskite 271</p> <p>9.4.2 Ag<sub>a</sub>Bi<sub>b</sub>X<sub>a+3b </sub>Rudorffites 275</p> <p>9.5 Summary and Outlook 279</p> <p>Acknowledgments 280</p> <p>References 280</p> <p><b>10 Sn-Based Halide Perovskite Solar Cells&nbsp;293<br /> </b><i>Shuzi Hayase</i></p> <p>10.1 Introduction 293</p> <p>10.2 Sn&ndash;Pb Perovskite Solar Cells 293</p> <p>10.2.1 Background 293</p> <p>10.2.2 Stabilization of Sn(II) Ions 295</p> <p>10.2.3 Efficiency Enhancement 296</p> <p>10.2.4 Interfacial Engineering and Device Architecture 298</p> <p>10.3 Pb-free Sn Perovskite Solar Cells 304</p> <p>10.3.1 Background 304</p> <p>10.3.2 Ge-Doped Sn Perovskites 307</p> <p>10.3.3 Efficiency Enhancement by Grain Boundary Passivation 309</p> <p>10.4 Conclusion 314</p> <p>References 315</p> <p><b>11 Quantum Dots of Halide Perovskite&nbsp;321<br /> </b><i>Yaohong Zhang, Guohua Wu, and Qing Shen</i></p> <p>11.1 Introduction 321</p> <p>11.2 The Synthesis of Halide Perovskite QDs 321</p> <p>11.2.1 Ligand-Assisted Reprecipitation Method 322</p> <p>11.2.2 Hot Injection Method 322</p> <p>11.2.3 Ion Exchange Reactions 325</p> <p>11.3 The Photophysics of Halide Perovskite QDs 326</p> <p>11.3.1 Tunable Bandgap 326</p> <p>11.3.2 Multiple Exciton Generation 327</p> <p>11.3.3 Hot Electron Extraction 327</p> <p>11.4 Surface Passivation of Halide Perovskite QDs 329</p> <p>11.4.1 Surface Ligand Engineering 329</p> <p>11.4.2 Post-Synthetic Treatment 331</p> <p>11.4.3 Surface Coating 332</p> <p>11.5 Applications of Halide Perovskite QDs 334</p> <p>11.5.1 Light-Emitting Diode (LED) 334</p> <p>11.5.2 Solar Cells 337</p> <p>11.6 Conclusion and Outlook 340</p> <p>References 340</p> <p><b>12 Perovskite Light-Emitting Diode Technologies&nbsp;345<br /> </b><i>Kangyu Ji, Miguel Anaya, and Samuel D. Stranks</i></p> <p>12.1 Introduction 345</p> <p>12.2 Physics Behind Operation of Perovskite-Based LEDs 346</p> <p>12.2.1 Photon Generation by Electrostimulation 347</p> <p>12.2.2 Charge Balance in PeLEDs 348</p> <p>12.2.3 Non-radiative Losses in PeLEDs 349</p> <p>12.2.4 Photon Recycling in PeLEDs 350</p> <p>12.3 Progress on Perovskite-Based LEDs 350</p> <p>12.3.1 Literature Review 356</p> <p>12.3.1.1 Near-Infrared PeLEDs 356</p> <p>12.3.1.2 Red PeLEDs 359</p> <p>12.3.1.3 Green PeLEDs 361</p> <p>12.3.1.4 Blue PeLEDs 365</p> <p>12.4 Challenges and Outlook 367</p> <p>12.5 Conclusions 370</p> <p>Acknowledgments 370</p> <p>References 371</p> <p><b>13 Perovskites Enabled Highly Sensitive and Fast Photodetectors&nbsp;383<br /> </b><i>Nicholas Lauersdorf and Jinsong Huang</i></p> <p>13.1 Introduction 383</p> <p>13.2 Why Perovskites for Photodetectors 383</p> <p>13.3 Types of Perovskite Photodetectors 386</p> <p>13.3.1 Photodiodes 386</p> <p>13.3.1.1 Broadband Photodiodes 387</p> <p>13.3.1.2 Narrowband Photodiodes 392</p> <p>13.3.2 Photoconductors 394</p> <p>13.3.2.1 Vertical Photoconductors 396</p> <p>13.3.2.2 Lateral Photoconductors 397</p> <p>13.3.3 Phototransistor 400</p> <p>13.4 Conclusion 402</p> <p>Acknowledgment 402</p> <p>Disclaimer 402</p> <p>References 403</p> <p><b>14 Metal Halide Perovskites for Sensitive X-ray Detectors&nbsp;411</b><br /> <i>Jingjing Zhao, Liang Zhao, and Jinsong Huang</i></p> <p>14.1 Introduction 411</p> <p>14.2 Working Mechanism of X-ray Detectors 412</p> <p>14.3 Material Properties of Ideal X-ray Detectors 413</p> <p>14.4 Conventional X-ray Detectors 415</p> <p>14.5 Perovskite X-ray Detectors 416</p> <p>14.5.1 Direct Perovskite X-ray Detectors 416</p> <p>14.5.2 Perovskite X-ray Scintillators 419</p> <p>14.6 Characterization of X-ray Flat Panels 422</p> <p>14.6.1 Sensitivity 422</p> <p>14.6.2 DQE 422</p> <p>14.6.3 MTF 423</p> <p>14.6.4 Pixel-to-Pixel Uniformity 424</p> <p>14.6.5 Imaging Lag 425</p> <p>14.6.6 Ghosting 425</p> <p>14.7 Summary and Outlook 426</p> <p>Acknowledgement 427</p> <p>References 427</p> <p><b>15 Perovskite-Based Multijunction Solar Cells&nbsp;433<br /> </b><i>J&eacute;r&eacute;mie Werner, Caleb C. Boyd, and Michael D. McGehee</i></p> <p>15.1 Introduction 433</p> <p>15.2 Why Perovskites? 435</p> <p>15.3 How to Make an Efficient Perovskite-Based Tandem? 435</p> <p>15.3.1 Low Bandgap Solar Cell 436</p> <p>15.3.1.1 Silicon 436</p> <p>15.3.1.2 Chalcopyrites: CIGS and CIS 437</p> <p>15.3.1.3 Sn/Pb Low Bandgap Perovskites 437</p> <p>15.3.2 Recombination Junction 438</p> <p>15.3.2.1 Nanocrystalline Silicon Junction 439</p> <p>15.3.2.2 Recombination Layer for All-Perovskite Tandems 440</p> <p>15.3.3 Wide-Bandgap Perovskite Solar Cell 440</p> <p>15.3.4 Mitigating Optical Losses 442</p> <p>15.3.4.1 Parasitic Absorption Losses 442</p> <p>15.3.4.2 Reflection Losses: Front, Middle, and Back 443</p> <p>15.3.4.3 Textured Substrates 445</p> <p>15.3.4.4 Current Matching Versus Power Matching 447</p> <p>15.4 Toward Commercialization 447</p> <p>15.4.1 Energy Yield 447</p> <p>15.4.2 Cost 448</p> <p>15.4.3 Market Choice 448</p> <p>15.5 Beyond Tandems: Triple? 449</p> <p>15.6 Concluding Remarks 450</p> <p>References 450</p> <p>Index 455</p>
<p><b><i>Tsutomu (Tom) Miyasaka</b> is Professor at the Toin University of Yokohama, Japan and a Fellow of the Research Center for Advanced Science and Technology of the University of Tokyo. He has been awarded Clarivate Citation Laureates for his discovery and applications of perovskite materials for efficient energy conversion.</i></p>
<p><b>Discover a one-of-a-kind treatment of perovskite photovoltaics</b></p> <p>In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. <p>In <i>Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications,</i> distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. <p>This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: <ul><li>A thorough introduction to halide perovskite materials, their synthesis, and dimension control </li> <li>Comprehensive explorations of the photovoltaics of halide perovskites and their historical background </li> <li>Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors </li> <li>In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells</li></ul> <p>Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, <i>Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications</i> is also an indispensable resource for solid state chemists and device/electronics engineers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €