Details

Peptide Materials


Peptide Materials

From Nanostuctures to Applications
2. Aufl.

von: Carlos Aleman, Alberto Bianco, Mariano Venanzi

143,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.03.2013
ISBN/EAN: 9781118592427
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Peptides are the building blocks of the natural world; with varied sequences and structures, they enrich materials producing more complex shapes, scaffolds and chemical properties with tailorable functionality. Essentially based on self-assembly and self-organization and mimicking the strategies that occur in Nature, peptide materials have been developed to accomplish certain functions such as the creation of specific secondary structures (a- or 310-helices, b-turns, b-sheets, coiled coils) or biocompatible surfaces with predetermined properties. They also play a key role in the generation of hybrid materials e.g. as peptide-inorganic biomineralized systems and peptide/polymer conjugates, producing smart materials for imaging, bioelectronics, biosensing and molecular recognition applications.</p> <p>Organized into four sections, the book covers the fundamentals of peptide materials, peptide nanostructures, peptide conjugates and hybrid nanomaterials, and applications with chapters including:</p> <ul> <li>Properties of peptide scaffolds in solution and on solid substrates</li> <li>Nanostructures, peptide assembly, and peptide nanostructure design</li> <li>Soft spherical structures obtained from amphiphilic peptides and peptide-polymer hybrids</li> <li>Functionalization of carbon nanotubes with peptides</li> <li>Adsorption of peptides on metal and oxide surfaces</li> <li>Peptide applications including tissue engineering, molecular switches, peptide drugs and drug delivery</li> </ul> <p><i>Peptide Materials: From Nanostructures to Applications</i> gives a truly interdisciplinary review, and should appeal to graduate students and researchers in the fields of materials science, nanotechnology, biomedicine and engineering as well as researchers in biomaterials and bio-inspired smart materials.</p>
Preface xiii <p>List of Contributors xvii</p> <p><b>Part I Fundamentals of Peptide Materials 1</b></p> <p><b>1 Physics of Peptide Nanostructures and Their Nanotechnology Applications 3</b><br /> <i>Nadav Amdursky, Peter Beker and Gil Rosenman</i></p> <p>1.1 Introduction to Peptide Nanotubes 4</p> <p>1.2 Optical Properties and Quantum Confinement of FF-based Nanostructures 8</p> <p>1.3 Odd-Tensor Related Physical Properties 13</p> <p>1.4 Thermal Induced Phase Transition in Peptide Nanotubes 17</p> <p>1.5 Deposition Techniques of PNT 22</p> <p>1.6 Applications of PNTs 29</p> <p>1.7 Conclusion 32</p> <p>References 33</p> <p><b>2 Chemistry of Peptide Materials: Synthetic Aspects and 3D Structural Studies 39</b><br /> <i>Fernando Formaggio, Alessandro Moretto, Marco Crisma and Claudio Toniolo</i></p> <p>2.1 Introduction 40</p> <p>2.2 Synthesis of Difficult Peptide Sequences 40</p> <p>2.3 Peptide (Amide) Bond 43</p> <p>2.4 Peptide Torsion Angles 44</p> <p>2.5 Peptide Secondary Structures 46</p> <p>References 58</p> <p><b>3 Conformational Aspects and Molecular Dynamics Simulations of Peptide Hybrid Materials: From Methods and Concepts to Applications 65</b><br /> <i>Carlos Alemán, Oscar Bertran, Jordi Casanovas, Juan Torras, Guillermo Revilla-López and David Zanuy</i></p> <p>3.1 Computational Chemistry 66</p> <p>3.2 Quantum Mechanical Calculations: Concepts 67</p> <p>3.3 Quantum Mechanical Calculations on Hybrid Peptide Materials: Some Examples 72</p> <p>3.4 NCAD: An Information Management System of Quantum Mechanical Calculations on Noncoded Amino Acids for Peptide Design 74</p> <p>3.5 Molecular Mechanics Calculations: Concepts 77</p> <p>3.6 Molecular Dynamics Simulations on Peptides 85</p> <p>3.7 Summary 97</p> <p>Acknowledgements 97</p> <p>References 98</p> <p><b>4 Peptronics: Peptide Materials for Electron Transfer 105</b><br /> <i>Emanuela Gatto and Mariano Venanzi</i></p> <p>4.1 Introduction 106</p> <p>4.2 Electron Transfer through Peptide Scaffolds in Solution 107</p> <p>4.3 Electron Transfer through Supported Peptide Matrices 121</p> <p>4.4 Conclusions and Perspectives 143</p> <p>Acknowledgements 143</p> <p>References 144</p> <p><b>Part II Peptide Nanostructures 149</b></p> <p><b>5 Molecular Architecture with Peptide Assembling for Nanomaterials 151</b><br /> <i>Shunsaku Kimura and Motoki Ueda</i></p> <p>5.1 Introduction 151</p> <p>5.2 Peptide Vesicles 152</p> <p>5.3 Peptide Building Blocks 157</p> <p>5.4 Peptide Architecture 159</p> <p>5.5 Function of Peptide Assemblies 161</p> <p>5.6 Tumor Imaging with Peptide Nanocarrier 163</p> <p>5.7 Perspectives 167</p> <p>References 168</p> <p><b>6 Principles of Shape-Driven Nanostructure Design via Self-Assembly of Protein Building Blocks 171</b><br /> <i>Idit Buch, Chung-Jung Tsai, Carlos Alemán and Ruth Nussinov</i></p> <p>6.1 Introduction 172</p> <p>6.2 Self-Assembly into Preferred Shapes 172</p> <p>6.3 Designing Protein Nanotubes 180</p> <p>6.4 Summary and Outlook 185</p> <p>Acknowledgements 186</p> <p>References 186</p> <p><b>7 Peptide-Based Soft Spherical Structures 191</b><br /> <i>K. Vijaya Krishna, Nidhi Gour and Sandeep Verma</i></p> <p>7.1 Introduction 191</p> <p>7.2 Short Peptide Sequences 192</p> <p>7.3 Amphiphilic Peptides 200</p> <p>7.4 Peptide–Polymer Hybrids 205</p> <p>7.5 Future Outlook 209</p> <p>References 211</p> <p><b>Part III Peptide Conjugates and Hybrid Materials 217</b></p> <p><b>8 Peptide-Based Carbon Nanotube Dispersal Agents 219</b><br /> <i>Anton S. Klimenko and Gregg R. Dieckmann</i></p> <p>8.1 Introduction 220</p> <p>8.2 α-Helical Surfactant Peptides 222</p> <p>8.3 β-Strand Surfactant-Like Peptides 229</p> <p>8.4 Extended Peptides 231</p> <p>8.5 Amorphous Peptides 233</p> <p>8.6 Cyclic Peptides 234</p> <p>8.7 Summary and Outlook 237</p> <p>Acknowledgements 239</p> <p>References 239</p> <p><b>9 Nanosized Vectors for Transfection Assembled from Peptides and Nucleic Acids 247</b><br /> <i>Burkhard Bechinger</i></p> <p>9.1 Introduction 248</p> <p>9.2 Condensation of Nucleic Acids by Cationic Peptides and Other Macromolecules 250</p> <p>9.3 The Size and Shape of Transfection Complexes 251</p> <p>9.4 Cellular Targeting by Specific Ligands 252</p> <p>9.5 Enhancing the Cellular Uptake of Nanocomplexes 252</p> <p>9.6 Assuring Endosomal Escape 253</p> <p>9.7 A Family of Multifunctional Peptide Sequences 255</p> <p>9.8 Delivery to the Nucleus and Other Intracellular Compartments 257</p> <p>9.9 Combining Different Functionalities into Complex Nanovectors 257</p> <p>Acknowledgements 259</p> <p>References 259</p> <p><b>10 Properties of Disubstituted Ferrocene–Peptide Conjugates: Design and Applications 265</b><br /> <i>Sanela Martiæ, Samaneh Beheshti and Heinz-Bernhard Kraatz</i></p> <p>10.1 Introduction 266</p> <p>10.2 Structural Considerations and Properties 266</p> <p>10.3 Fc–Peptides to Probe Interactions 274</p> <p>10.4 Conclusions 283</p> <p>References 284</p> <p><b>11 Mechanisms of Adsorption of Short Peptides on Metal and Oxide Surfaces 289</b><br /> <i>Vincent Humblot, Jessem Landoulsi and Claire-Marie Pradier</i></p> <p>11.1 Introduction 290</p> <p>11.2 Why Studying the Interaction of Short Peptides with Solid Surfaces? 291</p> <p>11.3 Metal and Oxide Surfaces 292</p> <p>11.4 Factors Influencing Peptide Adsorption 293</p> <p>11.5 Adsorption at the Solid/Gas interface 295</p> <p>11.6 Adsorption at the Solid/Liquid Interface 303</p> <p>11.7 Conclusions and Guidelines for the Future 307</p> <p>References 308</p> <p><b>Part IV Applications of Peptide Materials 313</b></p> <p><b>12 Bioactive Rosette Nanotubes for Bone Tissue Engineering and Drug Delivery 315</b><br /> <i>Rachel L. Beingessner, Alaaeddin Alsbaiee, Baljit Singh, Thomas J. Webster and Hicham Fenniri</i></p> <p>12.1 Introduction 316</p> <p>12.2 Rosette Nanotubes (RNTs) 317</p> <p>12.3 Applications of RNTs in Bone Tissue Engineering 328</p> <p>12.4 RNTs for Drug Delivery 340</p> <p>12.5 Conclusions 349</p> <p>References 350</p> <p><b>13 Peptide Secondary Structures as Molecular Switches 359</b><br /> <i>Fernando Formaggio, Alessandro Moretto, Marco Crisma and Claudio Toniolo</i></p> <p>13.1 Introduction 360</p> <p>13.2 Classical Secondary Structures Switches 360</p> <p>13.3 Recently Discovered Secondary Structure Switches 365</p> <p>13.4 Conclusions 376</p> <p>References 378</p> <p><b>14 Peptide Nanostructured Conjugates for Therapeutics: The Example of P140 Peptide for the Treatment of Systemic Lupus Erythematosus 385</b><br /> <i>Yves Frère, Louis Danicher and Sylviane Muller</i></p> <p>14.1 Introduction 386</p> <p>14.2 Noninvasive Routes of Peptide Administration 387</p> <p>14.3 Encapsulation of Peptides and Proteins for Oral Delivery 390</p> <p>14.4 P140 Peptide Nanostructured Complex for the Treatment of Systemic Lupus Erythematosus 399</p> <p>14.5 General Comments 412</p> <p>Acknowledgements 412</p> <p>References 412</p> <p><b>15 Identification and Application of Polymer-Binding Peptides 417</b><br /> <i>Toshiki Sawada and Takeshi Serizawa</i></p> <p>15.1 Introduction 417</p> <p>15.2 Biological Identification of Material-Binding Peptides 419</p> <p>15.3 Recognition of Polymer Stereoregularity by Peptides 421</p> <p>15.4 Recognition of Other Polymer Nanostructures by Peptides 424</p> <p>15.5 Applications of Polymer-Binding Peptides 426</p> <p>15.6 Summary 428</p> <p><i>References 428</i></p> <p><i>Index 435</i></p>
<p><b>Carlos Aleman</b>, <i>Universitat Politècnica de Catalunya, Spain</i></p> <p><b>Alberto Bianco</b>, <i>CNRS, Laboratoire d’Immunopathologie et Chimie Thérapeutique, France</i></p> <p><b>Mariano Venanzi</b>, <i>University of Rome Tor Vergata, Italy</i></p>
<p>Peptides are the building blocks of the natural world; with varied sequences and structures, they enrich materials producing more complex shapes, scaffolds and chemical properties with tailorable functionality. Essentially based on self-assembly and self-organization and mimicking the strategies that occur in Nature, peptide materials have been developed to accomplish certain functions such as the creation of specific secondary structures α- or 310-helices, β-turns, β -sheets, coiled coils) or biocompatible surfaces with predetermined properties. They also play a key role in the generation of hybrid materials e.g. as peptide-inorganic biomineralized systems and peptide/polymer conjugates, producing smart materials for imaging, bioelectronics, biosensing and molecular recognition applications.</p> <p>Organized into four sections, the book covers the fundamentals of peptide materials, peptide nanostructures, peptide conjugates and hybrid nanomaterials, and applications with chapters including:</p> <ul> <li>Properties of peptide scaffolds in solution and on solid substrates</li> <li>Nanostructures, peptide assembly, and peptide nanostructure design</li> <li>Soft spherical structures obtained from amphiphilic peptides and peptide-polymer hybrids</li> <li>Functionalization of carbon nanotubes with peptides</li> <li>Adsorption of peptides on metal and oxide surfaces</li> <li>Peptide applications including tissue engineering, molecular switches, peptide drugs and drug delivery</li> </ul> <p><i>Peptide Materials: From Nanostructures to Applications</i> gives a truly interdisciplinary review, and should appeal to graduate students and researchers in the fields of materials science, nanotechnology, biomedicine and engineering as well as researchers in biomaterials and bio-inspired smart materials.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €