Details

Organic and Molecular Electronics


Organic and Molecular Electronics

From Principles to Practice
2. Aufl.

von: Michael C. Petty

71,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.10.2018
ISBN/EAN: 9781118879276
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Preface Acknowledgements Symbols and Abbreviations About the companion website Chapter 1: Scope of Organic and Molecular Electronics 1. Introduction (2 Figs) 1.2. Organic Materials for Electronics 1.3. Molecular Electronics 1.3.1. Evolution of Microelectronics (1 Fig & 1 Tab) 1.3.2. Moore’s Laws (2 Figs) 1.3.3. Beyond Moore (1 Fig & 2 Tabs) 1.4. The Biological World 1.5. Future Opportunities (1 Fig) 1.6. Conclusions Problems Further Reading References Chapter 2: Materials’ Foundations 2.1. Introduction 2.2. Electronic Structure 2.2.1. Atomic Structure 2.2.2. Electrons in Atoms (3 Figs & 3 Tabs) 2.2.3. Filling of Orbitals 2.2.4. The Periodic Table (2 Figs) 2.3. Chemical Bonding 2.3.1. Bonding Principles (1 Fig) 2.3.2. Ionic Bond (2 Figs) 2.3.3. Covalent Bond (4 Figs) 2.3.4. Metallic Bonding (1 Fig.) 2.3.5. Van der Waals Bonding (1 Fig.) 2.3.6. Hydrogen Bonding (1 Fig. & 1 Tab) 2.4. Bonding in Organic Compounds 2.4.1. Hybridized Orbitals (3 Figs) 2.4.2. Isomers (6 Figs) Conformational Isomers Configurational Isomers 2.4.3. Double and Triple Bonds (6 Figs & 1 Tab) 2.5. Crystalline and Noncrystalline Materials 2.5.1. States of Matter (1 Fig) 2.5.2. Phase Changes and Thermodynamic Equilibrium 2.5.3. Crystal Lattice (1 Fig.) 2.5.4. Crystal Systems (1 Fig) 2.5.5. Miller Indices (2 Figs) 2.5.6. Distance between Crystal Planes 2.5.7. Defects Point Defects (2 Figs) Line Defects (1 Fig) Plane Defects (1 Fig) Surfaces (1 Fig) 2.5.8. Amorphous Solids (1 Fig) 2.6. Polymers (5 Figs & 1 Tab) 2.6.1. Molecular Weight 2.6.2. Polymer Structure 2.6.3. Polymer Crystallinity 2.7. Soft Matter: Emusions: Foams And Gels 2.8. Diffusion Problems Further Reading References Chapter 3: Electrical Conductivity 3.1. Introduction 3.2. Classical Theory (1 Fig) 3.2.1. Electrical Conductivity (2 Figs) 3.2.2. Ohm’s Law 3.2.3. Charge Carrier Mobility 3.2.4. Fermi Energy (2 Figs) 3.3. Energy Bands In Solids 3.3.1. Quantum Mechanical Foundations (7 Figs) Electromagnetic Waves Photons as Particles Electron Wavefunction Schrödinger Wave Equation Heisenberg’s Uncertainty Principle Quantum Mechanical Tunnelling 3.3.2. Kronig-Penney Model (5 Figs) 3.3.3. Conductors, Semiconductors and Insulators (1 Fig) 3.3.4. Electrons and Holes (1 Fig) 3.3.5. Intrinsic and Extrinsic Conduction n-Type Doping (1 Fig) p-Type Doping (1 Fig) Traps and Recombination Centres Fermi Level Position (2 Figs) 3.3.6. Quantum Wells (1 Fig) 3.3.7. Disordered Semiconductors (1 Fig) 3.3.8. Conductivity in Low-dimensional Solids (1 Fig) 3.4. Organic Compounds 3.4.1. Band Structure Molecular Crystals (2 Figs) Polymers Peierls Distortion (3 Figs, 1 Tab) Charge-Transfer Complexes (3 Figs) 3.4.2. Doping (3 Figs) 3.4.3. Solitons, Polarons and Bipolarons Solitons (3 Figs) Polarons and Bipolarons (1 Fig) 3.4.4. Superconductivity (1 Fig) 3.5. Low-Frequency Conduction 3.5.1. Electronic Versus Ionic Conductivity 3.5.2. Quantum Mechanical Tunnelling (2 Figs) 3.5.3. Variable Range Hopping 3.5.4. Fluctuation-Induced Tunnelling (1 Fig) 3.5.5. Space-Charge Injection (2 Figs) 3.5.6. Schottky and Poole-Frenkel Effects (1 Fig) 3.6. Conductivity at High Frequencies 3.6.1. Complex Permittivity (3 Figs) 3.6.2. Impedance Spectroscopy (2 Figs) Problems Further Reading References Chapter 4: Optical Phenomena 4.1. Introduction 4.2. Electromagnetic Radiation 4.3. Refractive Index 4.3.1. Permittivity Tensor (2 Figs) 4.3.2. Linear and Nonlinear Optics (2 Figs) 4.4. Interaction of Em Waves With Organic Molecules 4.4.1. Absorption Processes (4 Figs) 4.4.2. Aggregate Formation (2 Figs) 4.4.3. Excitons (1 Fig) 4.4.4. Effect of Electric Field on Absorption 4.4.5. Emission Processes (5 Figs) 4.4.6. Energy Transfer (2 Figs) 4.5. Transmission and Reflection from Interfaces 4.5.1. Laws of Reflection and Refraction (1 Fig) 4.5.2. Fresnel Equations (1 Fig) 4.5.3. Ellipsometry 4.5.4. Thin Films (2 Figs) 4.5.5. Transmission through Conductive Thin Films (1 Fig) 4.6. Waveguiding (3 Figs) 4.7. Surface Plasmons 4.7.1. The Evanescent Field (2 Figs) 4.7.2. Surface Plasmon Resonance (6 Figs) 4.8. Photonic Crystals (2 Figs) 4.8.1. Subwavelength Optics (2 Figs) Problems Further Reading References Chapter 5: Electroactive Organic Compounds 5.1. Introduction 5.2. Selected Topics in Chemistry 5.2.1. Moles and Molecules 5.2.2. Acids and Bases 5.2.3. Ions (1 Fig) 5.2.4. Solvents (1 Tab) 5.2.5. Functional Groups (1 Tab) 5.2.6. Aromatic Compounds (2 Tabs) 5.2.7. Material Purity 5.3. Conductive Polymers (5 Figs) 5.4. Charge-Transfer Complexes (3 Figs) 5.5. Graphene, Fullerenes and Nanotubes 5.5.1. Graphene (1 Fig) 5.5.2. Fullerenes (3 Figs) 5.5.3. Carbon Nanotubes (3 Figs) 5.6. Piezoelectricity, Pyroelectricity and Ferrolectricity 5.6.1. Basic Principles (3 Figs) 5.6.2. Organic Piezoelectric, Pyroelectric and Ferroelectric Compounds (1 Fig, 2 Tabs) 5.7. Magnetic Materials 5.7.1. Basic Principles (6 Figs, 2 Tabs) Diamagnetism Paramagnetism Ferromagnetism Antiferromagnetism Ferrimagnetism 5.7.2. Organic Magnets (1 Fig) Problems Further reading References Chapter 6: Tools for Molecular Electronics 6.1. Introduction 6.2. Direct Imaging 6.2.1. Optical Microscopy (2 Figs) 6.2.2. Electron Microscopy (3 Figs) 6.3. X-RAY Reflection (3 Figs) 6.3.1. Electron Density Profile 6.3.2. Keissig Fringes (1 Fig) 6.3.3. In-plane Measurements 6.4. Neutron Reflection 6.5. Electron Diffraction (3 Figs) 6.6. Infrared Spectroscopy (5 Figs; 1 Table) 6.6.1. Raman Scattering (1 Fig) 6.7. Surface Analytical Techniques (1 Fig; 1 Table) 6.8. Scanning Probe Microscopies (3 Figs) 6.9. Film Thickness Measurements (1 Fig; 1 Table) Problems Further Reading References Chapter 7: Thin Film Processing and Device Fabrication 7.1. Introduction 7.2. Established Deposition Methods 7.2.1. Spin-Coating (1 Fig) 7.2.2. Physical Vapour Deposition Thermal Evaporation (6 Figs) Molecular Beam Epitaxy (1 Fig) Sputtering (1 Fig) 7.2.3. Chemical Vapour Deposition 7.2.4. Electrochemical Methods 7.2.5. Inkjet Printing (5 Figs) 7.2.6. Spray Coating (1 Fig) 7.2.7. Sol-Gel Processing (1 Fig) 7.2.8. Other Techniques 7.3. Molecular Architectures 7.3.1. Langmuir-Blodgett Technique (12 Figs) 7.3.2. Chemical Self-Assembly (2 Figs) 7.3.3. Electrostatic Layer-by-Layer Deposition (5 Figs) 7.4. Micro and Nanofabrication 7.4.1. Photolithography (1 Fig) 7.4.2. Nanometre Pattern Definition (1 Fig) 7.4.3. Nanoimprint Lithography (1 Figs) 7.4.4. Scanning Probe Manipulation (3 Fig) 7.4.5. Dip-Pen Nanolithography (1 Fig) 7.4.6. Gravure Printing (1 Fig) 7.4.7. Other Methods Problems Further Reading References Chapter 8: Liquid Crystals and Devices 8.1. Introduction (1 Fig) 8.2. Liquid Crystal Phases 8.2.1. Thermotropic Liquid Crystals (1 Fig) Nematic Phases (2 Figs) Smectic Phases (2 Figs) Chiral Phases (2 Figs) Discotic Phases (2 Figs) 8.2.2. Lyotropic Liquid Crystals (1 Fig) 8.3. Liquid Crystal Polymers (2 Figs) 8.4. Display Devices 8.4.1. Birefringence (1 Fig) 8.4.2. Freedericksz Transition (2 Figs) 8.4.3. Twisted Nematic Display (2 Figs) 8.4.4. Passive and Active Addressing (1 Fig) 8.4.5. Full-Colour Displays 8.4.6. Super-Twisted Nematic Display (1 Fig) 8.5. Ferroelectric Liquid Crystals (2 Figs) 8.6. Polymer-Dispersed Liquid Crystals (2 Figs) 8.7. Liquid Crystal Lenses (2 Figs) 8.8. Other Application Areas (1 Fig) Problems Further Reading References Chapter 9: Plastic Electronics 9.1. Introduction 9.2. Organic Diodes 9.2.1. Schottky Diode (4 Figs) 9.2.2. Ohmic Contacts 9.3. Metal-Insulator-Semiconductor Structures 9.3.1. Idealized MIS Devices (2 Figs) 9.3.2. Effect of Real Surfaces 9.3.3. Organic MIS Structures (1 Fig) 9.4. Organic Field Effect Transistors (7 Figs) 9.5. Organic Integrated Circuits (1 Fig) 9.5.1. Radiofrequency Identification Tags (2 Figs) 9.6. Transparent Conducting Films 9.7. Organic Light-Emitting Devices (4 Figs) 9.7.1. Device Efficiency (2 Tables) 9.7.2. Device Architectures (1 Figs) Electrodes Hole and Electron Transport Layers (2 Fig) Triplet Emission (1 Fig) Blended Layer and Hybrid Molecular Structures (1 Fig) 9.7.3. Increasing the Light Output Efficiency Losses (1 Fig) Microlenses and Shaped Substrates (1 Figs) Microcavities (2 Figs) 9.7.4. Full-Colour Displays (1 Fig) 9.7.5. OLED Lighting 9.7.6. Light-Emitting Electrochemical Cells 9.7.7. Organic Light-Emitting Transistors (1 Fig) 9.7.8. Electronic Paper 9.8. Organic Photovoltaic Devices 9.8.1. Photovoltaic Principles (3 Figs) 9.8.2. Bulk Heterojunctions (1 Fig) 9.8.3. Dye-Sensitized Solar Cell (1 Fig) 9.8.4. Luminescent Concentrator (1 Fig) 9.9. Other Application Areas 9.9.1. Conductive Coatings 9.9.2. Batteries, Supercapacitors and Fuel Cells (2 Figs) Problems Further Reading References Chapter 10: Chemical Sensors and Physical Actuators 10.1. Introduction 10.2. Sensing Systems (1 Fig) 10.3. Definitions (3 Figs) 10.4. Chemical Sensors 10.4.1. Electrochemical Cells (4 Figs) 10.4.2. Resistance Gas Sensors (11 Figs) 10.4.3. Dielectric Sensors (4 Figs) 10.4.4. Acoustic Devices (2 Figs) 10.4.5. Optical Sensors (7 Figs) 10.5. Biological Olfaction (1 Fig) 10.6. Electronic Noses (1 Fig) 10.7. Physical Sensors and Actuators 10.7.1. Touch Sensors (1 Fig) 10.7.2. Polymer Actuators (5 Figs) 10.7.3. Lab-on-a-Chip (1 Fig) 10.8. Wearable Electronics Problems Further Reading References Chapter 11: Molecular and Nanoscale Electronics 11.1. Introduction 11.2. Nanosystems 11.2.1. Scaling Laws 11.2.2. Interatomic Forces (1 Fig) 11.3. Engineering Materials at the Molecular Level 11.3.1. Polar Materials (3 Figs) 11.3.2. Nonlinear Optical Materials (2 Figs) 11.3.3. Photonic Crystals (1 Fig) 11.4. Electronic Device Architectures (4 Figs) 11.4.1. Break Junctions (1 Fig) 11.5. Molecular Rectification (3 Figs) 11.6. Electronic Switching and Memory Phenomena 11.6.1. Resistive Bistable Devices (3 Figs) 11.6.2. Flash Memories (2 Figs) 11.6.3. Ferroelectric RAM 11.6.4. Spintronics (1 Fig) 11.6.5. Three-Dimensional Architectures (1 Fig) 11.7. Single Electron Devices (3 Figs) 11.8. Optical and Chemical Switches 11.8.1. Fluorescence Switching (1 Fig) 11.8.2. Photochromic Systems (4 Figs) 11.8.3. Chemical Control (1 Figs) 11.9. Nanomagnetics (1 Fig) 11.10. Nanotube and Graphene Electronics (3 Figs) 11.11. Molecular Actuation 11.11.1. Dynamically Controllable Surfaces (1 Fig) 11.11.2. Rotaxanes (1 Fig) 11.11.3. Optical Tweezers (1 Fig) 11.12. Molecular Logic Circuits (2 Figs) 11.13. Computing Architectures (2 Figs) 11.14. Quantum Computing (1 Fig) 11.15. Evolvable Electronics (1 Fig) Problems Further Reading References Chapter 12: Bioelectronics 12.1. Introduction 12.2. Biological Building Blocks 12.2.1. Amino Acids and Peptides (3 Figs & 1 Tab) 12.2.2. Proteins (3 Figs & 1 Tab) 12.2.3. Enzymes (1 Tab) 12.2.4. Carbohydrates (1 Fig) 12.2.5. Lipids (2 Fig) 12.3. Nucleotides 12.3.1. Bases (1 Fig) 12.3.2. DNA (1 Fig) 12.3.3. RNA 12.3.4. ATP, ADP (1 Fig) 12.4. Cells 12.5. Genetic Coding 12.5.1. Replication, Transcription and Translation (3 Figs & 1 Tab) 12.6. The Biological Membrane (1 Fig) 12.6.1. Transport across the Membrane Molecular and Ionic Transport (4 Figs) Electron Transport Systems (1 Fig) 12.7. Neurons (2 Figs) 12.8. Biosensors (1 Fig) 12.8.1. Biocatalytic Sensors (1 Fig) 12.8.2. Bioaffinity Sensors (2 Figs) 12.9. DNA Electronics 12.10. Photobiology 12.10.1. Bacteriorhodopsin (3 Figs) 12.10.2. Photosynthesis Reaction Centres and Antennae (4 Fig) Photosynthetic Electron Transfer Artificial Photosynthetic Systems (1 Fig) 12.11. Molecular Motors 12.11.1. Nature’s Motors (2 Figs) 12.11.2. Artificial Motors (1 Fig) Problems Further Reading References Constants Useful Relationships Properties of selected elements Index
MICHAEL C. PETTY, Emeritus Professor of Engineering, University of Durham, UK. Professor Petty has published extensively in the areas of organic electronics and molecular electronics and has lectured worldwide in these subjects. He was formerly President of the International Society for Molecular Electronics and BioComputing, and was a previous Chairman of the School of Engineering at Durham University.
AN INTRODUCTION TO THE INTERDISCIPLINARY SUBJECT OF MOLECULAR ELECTRONICS, REVISED AND UPDATED The second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad of companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. It covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. This second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.

Diese Produkte könnten Sie auch interessieren: