Details

Optimal Coordination of Power Protective Devices with Illustrative Examples


Optimal Coordination of Power Protective Devices with Illustrative Examples


IEEE Press Series on Power and Energy Systems 1. Aufl.

von: Ali R. Al-Roomi

103,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.11.2021
ISBN/EAN: 9781119794912
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Optimal Coordination of Power Protective Devices with Illustrative Examples</b> <p><b>Provides practical guidance on the coordination issue of power protective relays and fuses</b> <p>Protecting electrical power systems requires devices that isolate the components that are under fault while keeping the rest of the system stable. <i>Optimal Coordination of Power Protective Devices with Illustrative Examples</i> provides a thorough introduction to the optimal coordination of power systems protection using fuses and protective relays. <p>Integrating fundamental theory and real-world practice, the text begins with an overview of power system protection and optimization, followed by a systematic description of the essential steps in designing optimal coordinators using only directional overcurrent relays. Subsequent chapters present mathematical formulations for solving many standard test systems, and cover a variety of popular hybrid optimization schemes and their mechanisms. The author also discusses a selection of advanced topics and extended applications including adaptive optimal coordination, optimal coordination with multiple time-current curves, and optimally coordinating multiple types of protective devices. <i>Optimal Coordination of Power Protective Devices:</i> <ul><li>Covers fuses and overcurrent, directional overcurrent, and distance relays</li> <li>Explains the relation between fault current and operating time of protective relays</li> <li>Discusses performance and design criteria such as sensitivity, speed, and simplicity</li> <li>Includes an up-to-date literature review and a detailed overview of the fundamentals of power system protection</li> <li>Features numerous illustrative examples, practical case studies, and programs coded in MATLAB<sup>®</sup> programming language</li></ul> <p><i>Optimal Coordination of Power Protective</i> Devices with Illustrative Examples is the perfect textbook for instructors in electric power system protection courses, and a must-have reference for protection engineers in power electric companies, and for researchers and industry professionals specializing in power system protection.
<p>Author Biography xvi</p> <p>Preface xvii</p> <p>Acknowledgments xviii</p> <p>Acronyms xix</p> <p>About The Companion Website xxiii</p> <p>Introduction xxv</p> <p><b>1 Fundamental Steps in Optimization Algorithms </b><b>1</b></p> <p>1.1 Overview 1</p> <p>1.1.1 Design Variables 4</p> <p>1.1.2 Design Parameters 4</p> <p>1.1.3 Design Function 5</p> <p>1.1.4 Objective Function(s) 5</p> <p>1.1.5 Design Constraints 7</p> <p>1.1.5.1 Mathematical Constraints 8</p> <p>1.1.5.2 Inequality Constraints 8</p> <p>1.1.5.3 Side Constraints 9</p> <p>1.1.6 General Principles 10</p> <p>1.1.6.1 Feasible Space vs. Search Space 10</p> <p>1.1.6.2 Global Optimum vs. Local Optimum 11</p> <p>1.1.6.3 Types of Problem 12</p> <p>1.1.7 Standard Format 12</p> <p>1.1.8 Constraint-Handling Techniques 13</p> <p>1.1.8.1 Random Search Method 17</p> <p>1.1.8.2 Constant Penalty Function 17</p> <p>1.1.8.3 Binary Static Penalty Function 18</p> <p>1.1.8.4 Superiority of Feasible Points (SFPs) &ndash; Type I 18</p> <p>1.1.8.5 Superiority of Feasible Points (SFP) &ndash; Type II 18</p> <p>1.1.8.6 Eclectic Evolutionary Algorithm 18</p> <p>1.1.8.7 Typical Dynamic Penalty Function 19</p> <p>1.1.8.8 Exponential Dynamic Penalty Function 19</p> <p>1.1.8.9 Adaptive Multiplication Penalty Function 19</p> <p>1.1.8.10 Self-Adaptive Penalty Function (SAPF) 20</p> <p>1.1.9 Performance Criteria Used to Evaluate Algorithms 21</p> <p>1.1.10 Types of Optimization Techniques 23</p> <p>1.2 Classical Optimization Algorithms 23</p> <p>1.2.1 Linear Programming 25</p> <p>1.2.1.1 Historical Time-Line 25</p> <p>1.2.1.2 Mathematical Formulation of LP Problems 26</p> <p>1.2.1.3 Linear Programming Solvers 26</p> <p>1.2.2 Global-Local Optimization Strategy 28</p> <p>1.2.2.1 Multi-Start Linear Programming 29</p> <p>1.2.2.2 Hybridizing LP with Meta-Heuristic Optimization Algorithms as a Fine-Tuning Unit 31</p> <p>1.3 Meta-Heuristic Algorithms 33</p> <p>1.3.1 Biogeography-Based Optimization 34</p> <p>1.3.1.1 Migration Stage 40</p> <p>1.3.1.2 Mutation Stage 41</p> <p>1.3.1.3 Clear Duplication Stage 43</p> <p>1.3.1.4 Elitism Stage 44</p> <p>1.3.1.5 The Overall BBO Algorithm 45</p> <p>1.3.2 Differential Evolution 45</p> <p>1.4 Hybrid Optimization Algorithms 46</p> <p>1.4.1 BBO-LP 48</p> <p>1.4.2 BBO/DE 51</p> <p>Problems 51</p> <p>Written Exercises 51</p> <p>Computer Exercises 53</p> <p><b>2 Fundamentals of Power System Protection </b><b>57</b></p> <p>2.1 Faults Classification 57</p> <p>2.2 Protection System 61</p> <p>2.3 Zones of Protection 65</p> <p>2.4 Primary and Backup Protection 66</p> <p>2.5 Performance and Design Criteria 66</p> <p>2.5.1 Reliability 66</p> <p>2.5.1.1 Dependability 66</p> <p>2.5.1.2 Security 66</p> <p>2.5.2 Sensitivity 67</p> <p>2.5.3 Speed 67</p> <p>2.5.4 Selectivity 67</p> <p>2.5.5 Performance versus Economics 67</p> <p>2.5.6 Adequateness 67</p> <p>2.5.7 Simplicity 67</p> <p>2.6 Overcurrent Protective Devices 67</p> <p>2.6.1 Fuses 68</p> <p>2.6.2 Bimetallic Relays 69</p> <p>2.6.3 Overcurrent Protective Relays 69</p> <p>2.6.4 Instantaneous OCR (IOCR) 70</p> <p>2.6.5 Definite Time OCR (DTOCR) 71</p> <p>2.6.6 Inverse Time OCR (ITOCR) 72</p> <p>2.6.7 Mixed Characteristic Curves 73</p> <p>2.6.7.1 Definite-Time Plus Instantaneous 73</p> <p>2.6.7.2 Inverse-Time Plus Instantaneous 74</p> <p>2.6.7.3 Inverse-Time Plus Definite-Time Plus Instantaneous 74</p> <p>2.6.7.4 Inverse-Time Plus Definite-Time 75</p> <p>2.6.7.5 Inverse Definite Minimum Time (IDMT) 76</p> <p>Problems 76</p> <p>Written Exercises 76</p> <p>Computer Exercises 77</p> <p><b>3 Mathematical Modeling of Inverse-Time Overcurrent Relay Characteristics </b><b>79</b></p> <p>3.1 Computer Representation of Inverse-Time Overcurrent Relay Characteristics 79</p> <p>3.1.1 Direct Data Storage 79</p> <p>3.1.2 Curve Fitting Formulas 82</p> <p>3.1.2.1 Polynomial Equations 82</p> <p>3.1.2.2 Exponential Equations 89</p> <p>3.1.2.3 Artificial Intelligence 93</p> <p>3.1.3 Special Models 94</p> <p>3.1.3.1 RI-Type Characteristic 94</p> <p>3.1.3.2 RD-Type Characteristic 95</p> <p>3.1.3.3 FR Short Time Inverse 95</p> <p>3.1.3.4 UK Rectifier Protection 95</p> <p>3.1.3.5 BNP-Type Characteristic 95</p> <p>3.1.3.6 Standard CO Series Characteristics 95</p> <p>3.1.3.7 IAC and ANSI Special Equations 96</p> <p>3.1.4 User-Defined Curves 98</p> <p>3.2 Dealing with All the Standard Characteristic Curves Together 99</p> <p>3.2.1 Differentiating Between Time Dial Setting and Time Multiplier Setting 99</p> <p>3.2.2 Dealing with Time Dial Setting and Time Multiplier Setting as One Variable 104</p> <p>3.2.2.1 Fixed Divisor 106</p> <p>3.2.2.2 Linear Interpolation 108</p> <p>3.2.3 General Guidelines Before Conducting Researches and Studies 111</p> <p>Problems 113</p> <p>Written Exercises 113</p> <p>Computer Exercises 114</p> <p><b>4 Upper Limit of Relay Operating Time </b><b>117</b></p> <p>4.1 Do We Need to Define T<sup>max</sup> ? 117</p> <p>4.2 How to Define T<sup>max</sup> ? 118</p> <p>4.2.1 Thermal Equations 118</p> <p>4.2.1.1 Thermal Overload Protection for 3𝜙 Overhead Lines and Cables 118</p> <p>4.2.1.2 Thermal Overload Protection for Motors 122</p> <p>4.2.1.3 Thermal Overload Protection for Transformers 124</p> <p>4.2.2 Stability Analysis 126</p> <p>Problems 136</p> <p>Written Exercises 136</p> <p>Computer Exercises 138</p> <p><b>5 Directional Overcurrent Relays and the Importance of Relay Coordination </b><b>139</b></p> <p>5.1 Relay Grading in Radial Systems 139</p> <p>5.1.1 Time Grading 140</p> <p>5.1.2 Current Grading 140</p> <p>5.1.3 Inverse-Time Grading 143</p> <p>5.2 Directional Overcurrent Relays 146</p> <p>5.3 Coordination of DOCRs 148</p> <p>5.4 Is the Coordination of DOCRs an Iterative Problem? 148</p> <p>5.5 Minimum Break-Point Set 161</p> <p>5.6 Summary 163</p> <p>Problems 164</p> <p>Written Exercises 164</p> <p>Computer Exercises 166</p> <p><b>6 General Mechanism to Optimally Coordinate Directional Overcurrent Relays </b><b>169</b></p> <p>6.1 Constructing Power Network 169</p> <p>6.2 Power Flow Analysis 170</p> <p>6.2.1 Per-Unit System and Three-to-One-Phase Conversion 172</p> <p>6.2.2 Power Flow Solvers 173</p> <p>6.2.3 How to Apply the Newton&ndash;Raphson Method 175</p> <p>6.2.4 Sparsity Effect 179</p> <p>6.3 P/B Pairs Identification 186</p> <p>6.3.1 Inspection Method 186</p> <p>6.3.2 Graph Theory Methods 186</p> <p>6.3.3 Special Software 188</p> <p>6.4 Short-Circuit Analysis 189</p> <p>6.4.1 Short-Circuit Calculations 189</p> <p>6.4.2 Electric Power Engineering Software Tools 190</p> <p>6.4.2.1 Minimum Short-Circuit Current 190</p> <p>6.4.2.2 Maximum Short-Circuit Current 192</p> <p>6.4.3 Most Popular Standards 193</p> <p>6.4.3.1 ANSI/IEEE Standards C37 &amp; UL 489 193</p> <p>6.4.3.2 IEC 61363 Standard 194</p> <p>6.4.3.3 IEC 60909 Standard 194</p> <p>6.5 Applying Optimization Techniques 201</p> <p>Problems 202</p> <p>Written Exercises 202</p> <p>Computer Exercises 205</p> <p><b>7 Optimal Coordination of Inverse-Time DOCRs with Unified TCCC </b><b>207</b></p> <p>7.1 Mathematical Problem Formulation 207</p> <p>7.1.1 Objective Function 208</p> <p>7.1.1.1 Other Possible Objective Functions 210</p> <p>7.1.2 Inequality Constraints on Relay Operating Times 211</p> <p>7.1.3 Side Constraints on Relay Time Multiplier Settings 211</p> <p>7.1.4 Side Constraints on Relay Plug Settings 211</p> <p>7.1.5 Selectivity Constraint Among Primary and Backup Relay Pairs 212</p> <p>7.1.5.1 Transient Selectivity Constraint 213</p> <p>7.1.6 Standard Optimization Model 216</p> <p>7.2 Optimal Coordination of DOCRs Using Meta-Heuristic Optimization Algorithms 217</p> <p>7.2.1 Algorithm Implementation 217</p> <p>7.2.2 Constraint-Handling Techniques 218</p> <p>7.2.3 Solving the Infeasibility Condition 222</p> <p>7.3 Results Tester 228</p> <p>Problems 229</p> <p>Written Exercises 229</p> <p>Computer Exercises 231</p> <p><b>8 Incorporating LP and Hybridizing It with Meta-heuristic Algorithms </b><b>235</b></p> <p>8.1 Model Linearization 235</p> <p>8.1.1 Classical Linearization Approach 236</p> <p>8.1.1.1 IEC Curves: Fixing Plug Settings and Varying Time Multiplier Settings 236</p> <p>8.1.1.2 IEEE Curves: Fixing Current Tap Settings and Varying Time Dial Settings 237</p> <p>8.1.2 Transformation-Based Linearization Approach 237</p> <p>8.1.2.1 IEC Curves: Fixing Time Multiplier Settings and Varying Plug Settings 238</p> <p>8.1.2.2 IEEE Curves: Fixing Time Dial Settings and Varying Current Tap Settings 238</p> <p>8.2 Multi-start Linear Programming 242</p> <p>8.3 Hybridizing Linear Programming with Population-Based Meta-heuristic Optimization Algorithms 245</p> <p>8.3.1 Classical Linearization Approach: Fixing PS/CTS and Varying TMS/TDS 245</p> <p>8.3.2 Transformation-Based Linearization Approach: Fixing TMS/TDS and Varying PS/CTS 245</p> <p>8.3.3 Innovative Linearization Approach: Fixing/Varying TMS/TDS and PS/CTS 250</p> <p>Problems 250</p> <p>Written Exercises 250</p> <p>Computer Exercises 251</p> <p><b>9 Optimal Coordination of DOCRs With OCRs and Fuses </b><b>253</b></p> <p>9.1 Simple Networks 253</p> <p>9.1.1 Protecting Radial Networks by Just OCRs 253</p> <p>9.1.2 Protecting Double-Line Networks by OCRs and DOCRs 255</p> <p>9.2 Little Harder Networks 257</p> <p>9.2.1 Combination of OCRs and DOCRs 258</p> <p>9.2.2 Combination of Fuses, OCRs, and DOCRs 261</p> <p>9.3 Complex Networks 264</p> <p>Problems 265</p> <p>Written Exercises 265</p> <p>Computer Exercises 266</p> <p><b>10 Optimal Coordination with Considering Multiple Characteristic Curves </b><b>271</b></p> <p>10.1 Introduction 271</p> <p>10.2 Optimal Coordination of DOCRs with Multiple TCCCs 273</p> <p>10.3 Optimal Coordination of OCRs/DOCRs with Multiple TCCCs 278</p> <p>10.4 Inherent Weaknesses of the Multi-TCCCs Approach 279</p> <p>Problems 280</p> <p>Written Exercises 280</p> <p>Computer Exercises 281</p> <p><b>11 Optimal Coordination with Considering the Best TCCC </b><b>283</b></p> <p>11.1 Introduction 283</p> <p>11.2 Possible Structures of the Optimizer 284</p> <p>11.3 Technical Issue 287</p> <p>Problems 290</p> <p>Written Exercises 290</p> <p>Computer Exercises 291</p> <p><b>12 Considering the Actual Settings of Different Relay Technologies in the Same Network </b><b>293</b></p> <p>12.1 Introduction 293</p> <p>12.2 Mathematical Formulation 294</p> <p>12.2.1 Objective Function 294</p> <p>12.2.2 Selectivity Constraint Among Primary and Backup Relay Pairs 295</p> <p>12.2.3 Inequality Constraints on Relay Operating Times 296</p> <p>12.2.4 Side Constraints on Relay Time Multiplier Settings 296</p> <p>12.2.5 Side Constraints on Relay Plug Settings 296</p> <p>12.3 Biogeography-Based Optimization Algorithm 297</p> <p>12.3.1 Clear Duplication Stage 297</p> <p>12.3.2 Avoiding Facing Infeasible Selectivity Constraints 297</p> <p>12.3.2.1 Linear Programming Stage 297</p> <p>12.3.3 Linking PS<sup>y</sup><sub>i</sub> <sup>i</sup> and TMS<sup>y</sup><sub>i</sub> <sup>i</sup> with y<sub>i</sub> 298</p> <p>12.4 Further Discussion 299</p> <p>Problems 300</p> <p>Written Exercises 300</p> <p>Computer Exercises 301</p> <p><b>13 Considering Double Primary Relay Strategy </b><b>303</b></p> <p>13.1 Introduction 303</p> <p>13.2 Mathematical Formulation 306</p> <p>13.2.1 Objective Function 307</p> <p>13.2.2 Selectivity Constraint 308</p> <p>13.2.3 Inequality Constraints on Relay Operating Times 308</p> <p>13.2.4 Side Constraints on Relay Time Multiplier Settings 308</p> <p>13.2.5 Side Constraints on Relay Plug Settings 309</p> <p>13.3 Possible Configurations of Double Primary ORC Problems 309</p> <p>Problems 315</p> <p>Written Exercises 315</p> <p>Computer Exercises 316</p> <p><b>14 Adaptive ORC Solver </b><b>319</b></p> <p>14.1 Introduction 319</p> <p>14.2 Types of Network Changes 320</p> <p>14.2.1 Operational Changes 321</p> <p>14.2.2 Topological Changes 321</p> <p>14.3 AI-Based Adaptive ORC Solver 322</p> <p>14.3.1 Generating Datasets 323</p> <p>14.3.2 Applying ANN to Solve ORC Problems 324</p> <p>Problems 328</p> <p>Written Exercises 328</p> <p>Computer Exercises 329</p> <p>15 Multi-objective Coordination 333</p> <p>15.1 Basic Principles 333</p> <p>15.1.1 Conventional Aggregation Method 334</p> <p>15.2 Multi-objective Formulation of ORC Problems 335</p> <p>15.2.1 Operating Time vs. System Reliability 336</p> <p>15.2.2 Operating Time vs. System Cost 336</p> <p>15.2.3 Operating Time vs. System Reliability vs. System Cost 342</p> <p>15.3 Further Discussions 342</p> <p>Problems 345</p> <p>Written Exercises 345</p> <p>Computer Exercises 345</p> <p><b>16 Optimal Coordination of Distance and Overcurrent Relays </b><b>347</b></p> <p>16.1 Introduction 347</p> <p>16.2 Basic Mathematical Modeling 348</p> <p>16.3 Mathematical Modeling with Considering Multiple TCCCs 350</p> <p>16.3.1 Inequality Constraints 351</p> <p>16.3.2 Objective Function 352</p> <p>16.4 Mathematical Modeling with Considering Different Fault Locations 353</p> <p>16.4.1 Objective Function 353</p> <p>16.4.2 Inequality Constraints 354</p> <p>16.4.2.1 Near-End Faults 354</p> <p>16.4.2.2 Middle-Point Faults 354</p> <p>16.4.2.3 Far-End Faults 355</p> <p><b>17 Trending Topics and Existing Issues </b><b>357</b></p> <p>17.1 New Inverse-Time Characteristics 357</p> <p>17.1.1 Scaled Standard TCCC Models 357</p> <p>17.1.2 Stepwise TCCCs 358</p> <p>17.1.3 New Customized TCCCs 359</p> <p>17.2 Smart Grid 359</p> <p>17.2.1 Distributed Generation 359</p> <p>17.2.2 Series Compensation and Flexible Alternating Current Transmission System 360</p> <p>17.2.3 Fault Current Limiters 360</p> <p>17.3 Economic Operation 360</p> <p>17.4 Power System Realization 361</p> <p>17.4.1 Power Lines 361</p> <p>17.4.2 Economic Operation 363</p> <p>17.4.2.1 Combined-Cycle Power Plants 364</p> <p>17.4.2.2 Degraded Efficiency Phenomenon 364</p> <p>17.4.2.3 Unaccounted Losses in Power Stations 365</p> <p>17.5 Locating Faults in Mesh Networks by DOCRs 367</p> <p>17.5.1 Mechanism of the Proposed Fault Location Algorithm 370</p> <p>17.5.1.1 Approach No. 1: Classical Linear Interpolation 373</p> <p>17.5.1.2 Approach No. 2: Logarithmic/Nonlinear Interpolation 374</p> <p>17.5.1.3 Approach No. 3: Polynomial Regression 375</p> <p>17.5.1.4 Approach No. 4: Asymptotic Regression 375</p> <p>17.5.1.5 Approach No. 5: DTCC-Based Regression 375</p> <p>17.5.2 Final Structure of the Proposed Fault Locator 377</p> <p>17.5.3 Overall Accuracy vs. Uncertainty 379</p> <p>17.5.4 Further Discussion 380</p> <p><b>Appendix A Some Important Data Used in Power System Protection </b><b>381</b></p> <p>A.1 Standard Current Transformer Ratios 381</p> <p>A.2 Standard Device/Function Number and Function Acronym Descriptions 382</p> <p>A.2.1 Standard Device/Function Numbers 382</p> <p>A.2.2 Device/Function Acronyms 383</p> <p>A.2.3 Suffix Letters 383</p> <p>A.2.3.1 Auxiliary Devices 383</p> <p>A.2.3.2 Actuating Quantities 383</p> <p>A.2.3.3 Main Device 384</p> <p>A.2.3.4 Main Device Parts 384</p> <p>A.2.3.5 Other Suffix Letters 384</p> <p><b>Appendix B How to Install PowerWorld Simulator (Education Version) </b><b>387</b></p> <p><b>Appendix C Single-Machine Infinite Bus </b><b>391</b></p> <p><b>Appendix D Linearizing Relay Operating Time Models </b><b>393</b></p> <p>D.1 Linearizing the IEC/BS Model of DOCRs by Fixing Time Multiplier Settings 393</p> <p>D.2 Linearizing the ANSI/IEEE Model of DOCRs by Fixing Time Multiplier Settings 394</p> <p><b>Appendix E Derivation of the First Order Thermal Differential Equation </b><b>397</b></p> <p><b>Appendix F List of ORC Test Systems </b><b>399</b></p> <p>F.1 Three-Bus Test Systems 399</p> <p>F.1.1 System No. 1 399</p> <p>F.1.2 System No. 2 399</p> <p>F.2 Four-Bus Test Systems 403</p> <p>F.2.1 System No. 1 403</p> <p>F.2.2 System No. 2 403</p> <p>F.3 Five-Bus Test System 408</p> <p>F.4 Six-Bus Test Systems 410</p> <p>F.4.1 System No. 1 410</p> <p>F.4.2 System No. 2 410</p> <p>F.4.3 System No. 3 411</p> <p>F.4.4 System No. 4 413</p> <p>F.5 Eight-Bus Test Systems 418</p> <p>F.5.1 System No. 1 418</p> <p>F.5.2 System No. 2 422</p> <p>F.5.3 System No. 3 423</p> <p>F.5.4 System No. 4 424</p> <p>F.5.5 System No. 5 425</p> <p>F.6 Nine-Bus Test System 427</p> <p>F.7 14-Bus Test Systems 430</p> <p>F.7.1 System No. 1 431</p> <p>F.7.2 System No. 2 433</p> <p>F.8 15-Bus Test System 437</p> <p>F.9 30-Bus Test Systems 441</p> <p>F.9.1 System No. 1 441</p> <p>F.9.2 System No. 2 444</p> <p>F.10 42-Bus Test System 448</p> <p>F.11 118-Bus Test System 453</p> <p>References 457</p> <p>Index 479</p>
<p><b>ALI R. AL-ROOMI, PhD, </b>is a Research Assistant at Dalhousie University, Halifax, Canada. He is an IEEE Member and has served as an academic reviewer for<i> Transactions on Automation Science and Engineering and Electrical Power</i> and <i>Energy Conference.</i> His research interests include power systems operation, control systems, sensors, optimization algorithms, and machine learning computing systems.</p>
<p><b>Provides practical guidance on the coordination issue of power protective relays and fuses</b></p> <p>Protecting electrical power systems requires devices that isolate the components that are under fault while keeping the rest of the system stable. <i>Optimal Coordination of Power Protective Devices with Illustrative Examples</i> provides a thorough introduction to the optimal coordination of power systems protection using fuses and protective relays. <p>Integrating fundamental theory and real-world practice, the text begins with an overview of power system protection and optimization, followed by a systematic description of the essential steps in designing optimal coordinators using only directional overcurrent relays. Subsequent chapters present mathematical formulations for solving many standard test systems, and cover a variety of popular hybrid optimization schemes and their mechanisms. The author also discusses a selection of advanced topics and extended applications including adaptive optimal coordination, optimal coordination with multiple time-current curves, and optimally coordinating multiple types of protective devices. <i>Optimal Coordination of Power Protective Devices:</i> <ul><li>Covers fuses and overcurrent, directional overcurrent, and distance relays</li> <li>Explains the relation between fault current and operating time of protective relays</li> <li>Discusses performance and design criteria such as sensitivity, speed, and simplicity</li> <li>Includes an up-to-date literature review and a detailed overview of the fundamentals of power system protection</li> <li>Features numerous illustrative examples, practical case studies, and programs coded in MATLAB<sup>®</sup> programming language</li></ul> <p><i>Optimal Coordination of Power Protective</i> Devices with Illustrative Examples is the perfect textbook for instructors in electric power system protection courses, and a must-have reference for protection engineers in power electric companies, and for researchers and industry professionals specializing in power system protection.

Diese Produkte könnten Sie auch interessieren:

Understanding Electric Power Systems
Understanding Electric Power Systems
von: Frank Delea, Jack Casazza
PDF ebook
81,99 €
Emergency Response Management of Offshore Oil Spills
Emergency Response Management of Offshore Oil Spills
von: Nicholas P. Cheremisinoff, Anton Davletshin
PDF ebook
185,99 €
Emergency Response Management of Offshore Oil Spills
Emergency Response Management of Offshore Oil Spills
von: Nicholas P. Cheremisinoff, Anton Davletshin
EPUB ebook
185,99 €