Details

Optics, Light and Lasers


Optics, Light and Lasers

The Practical Approach to Modern Aspects of Photonics and Laser Physics
3. Aufl.

von: Dieter Meschede

83,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 21.02.2017
ISBN/EAN: 9783527685516
Sprache: englisch
Anzahl Seiten: 552

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This new, updated and enlarged edition of the successful and exceptionally well-structured textbook features new chapters on such hot topics as optical angular momentum, microscopy beyond the resolution limit, metamaterials, femtocombs, and quantum cascade lasers. It provides comprehensive and coherent coverage of fundamental optics, laser physics, and important modern applications, while equally including some traditional aspects for the first time, such as the Collins integral or solid immersion lenses. <br> Written for newcomers to the topic who will benefit from the author's ability to explain difficult theories and effects in a straightforward and readily comprehensible way.<br>
<p>Preface xix</p> <p><b>1 Light Rays 1</b></p> <p>1.1 Light Rays in Human Experience 1</p> <p>1.2 Ray Optics 2</p> <p>1.3 Reflection 2</p> <p>1.4 Refraction 3</p> <p>1.5 Fermat’s Principle: The Optical Path Length 5</p> <p>1.6 Prisms 8</p> <p>1.7 Light Rays in Wave Guides 10</p> <p>1.8 Lenses and Curved Mirrors 15</p> <p>1.9 Matrix Optics 17</p> <p>1.10 Ray Optics and Particle Optics 23</p> <p>Problems 25</p> <p><b>2 Wave Optics 29</b></p> <p>2.1 Electromagnetic Radiation Fields 29</p> <p>2.2 Wave Types 37</p> <p>2.3 Gaussian Beams 40</p> <p>2.4 Vector Light: Polarization 50</p> <p>2.5 Optomechanics: Mechanical Action of Light Beams 58</p> <p>2.6 Diffraction 63</p> <p>2.7 Fraunhofer Diffraction 67</p> <p>2.8 Fresnel Diffraction 71</p> <p>2.9 Beyond Gaussian Beams: Diffraction Integral and ABCD Formalism 77</p> <p>Problems 77</p> <p><b>3 Light Propagation in Matter: Interfaces, Dispersion, and Birefringence 83</b></p> <p>3.1 Dielectric Interfaces 83</p> <p>3.2 Interfaces of Conducting Materials 89</p> <p>3.3 Light Pulses in Dispersive Materials 94</p> <p>3.4 Anisotropic Optical Materials 103</p> <p>3.5 Optical Modulators 110</p> <p>Problems 119</p> <p><b>4 Light Propagation in Structured Matter 121</b></p> <p>4.1 Optical Wave Guides and Fibers 122</p> <p>4.2 Dielectric Photonic Materials 132</p> <p>4.3 Metamaterials 143</p> <p>Problems 147</p> <p><b>5 Optical Images 149</b></p> <p>5.1 Simple Lenses 149</p> <p>5.2 The Human Eye 151</p> <p>5.3 Magnifying Glass and Eyepiece 152</p> <p>5.4 Microscopes 154</p> <p>5.5 Scanning Microscopy Methods 161</p> <p>5.6 Telescopes 166</p> <p>5.7 Lenses: Designs and Aberrations 169</p> <p>Problems 177</p> <p><b>6 Coherence and Interferometry 181</b></p> <p>6.1 Young’s Double Slit 181</p> <p>6.2 Coherence and Correlation 182</p> <p>6.3 The Double-Slit Experiment 185</p> <p>6.4 Michelson interferometer: longitudinal coherence 191</p> <p>6.5 Fabry–Pérot Interferometer 197</p> <p>6.6 Optical Cavities 202</p> <p>6.7 Thin Optical Films 208</p> <p>6.8 Holography 210</p> <p>6.9 Laser Speckle (Laser Granulation) 214</p> <p>Problems 216</p> <p><b>7 Light and Matter 219</b></p> <p>7.1 Classical Radiation Interaction 220</p> <p>7.2 Two-Level Atoms 229</p> <p>7.3 Stimulated and Spontaneous Radiation Processes 239</p> <p>7.4 Inversion and Amplification 242</p> <p>Problems 246</p> <p><b>8 The Laser 249</b></p> <p>8.1 The Classic System: The He–Ne Laser 251</p> <p>8.2 Other Gas Lasers 261</p> <p>8.3 The Workhorses: Solid-State Lasers 268</p> <p>8.4 Selected Solid-State Lasers 271</p> <p>8.5 Tunable Lasers with Vibronic States 279</p> <p>8.6 Tunable Ring Lasers 281</p> <p>Problems 283</p> <p><b>9 Laser Dynamics 285</b></p> <p>9.1 Basic Laser Theory 285</p> <p>9.2 Laser Rate Equations 291</p> <p>9.3 Threshold-Less Lasers and Micro-lasers 295</p> <p>9.4 Laser Noise 298</p> <p>9.5 Pulsed Lasers 305</p> <p>Problems 316</p> <p><b>10 Semiconductor Lasers 319</b></p> <p>10.1 Semiconductors 319</p> <p>10.2 Optical Properties of Semiconductors 322</p> <p>10.3 The Heterostructure Laser 330</p> <p>10.4 Dynamic Properties of Semiconductor Lasers 339</p> <p>10.5 Laser Diodes, Diode Lasers, and Laser Systems 345</p> <p>10.6 High-Power Laser Diodes 348</p> <p>Problems 350</p> <p><b>11 Sensors for Light 353</b></p> <p>11.1 Characteristics of Optical Detectors 354</p> <p>11.2 Fluctuating Optoelectronic Quantities 357</p> <p>11.3 Photon Noise and Detectivity Limits 359</p> <p>11.4 Thermal Detectors 364</p> <p>11.5 Quantum Sensors I: Photomultiplier Tubes 366</p> <p>11.6 Quantum Sensors II: Semiconductor Sensors 370</p> <p>11.7 Position and Image Sensors 374</p> <p>Problems 377</p> <p><b>12 Laser Spectroscopy and Laser Cooling 379</b></p> <p>12.1 Laser-Induced Fluorescence (LIF) 379</p> <p>12.2 Absorption and Dispersion 380</p> <p>12.3 The Width of Spectral Lines 382</p> <p>12.4 Doppler-Free Spectroscopy 388</p> <p>12.5 Light Forces 394</p> <p>Problems 404</p> <p><b>13 Coherent Light–Matter Interaction 407</b></p> <p>13.1 Weak Coupling and Strong Coupling 407</p> <p>13.2 Transient Phenomena 410</p> <p><b>14 Photons: An Introduction to Quantum Optics 417</b></p> <p>14.1 Does Light Exhibit Quantum Character? 417</p> <p>14.2 Quantization of the Electromagnetic Field 418</p> <p>14.3 Spontaneous Emission 421</p> <p>14.4 Resonance Fluorescence 427</p> <p>14.5 Light Fields in Quantum Optics 435</p> <p>14.6 Two-Photon Optics 444</p> <p>14.7 Entangled Photons 448</p> <p>Problems 455</p> <p><b>15 Nonlinear Optics I: Optical Mixing Processes 457</b></p> <p>15.1 Charged Anharmonic Oscillators 457</p> <p>15.2 Second-Order Nonlinear Susceptibility 459</p> <p>15.3 Wave Propagation in Nonlinear Media 464</p> <p>15.4 Frequency Doubling 466</p> <p>15.5 Sum and Difference Frequency 477</p> <p>15.6 Optical Parametric Oscillators 479</p> <p><b>Problems 482</b></p> <p>16 Nonlinear Optics II: Four-Wave Mixing 485</p> <p>16.1 Frequency Tripling in Gases 485</p> <p>16.2 Nonlinear Refraction Coefficient (Optical Kerr Effect) 487</p> <p>16.3 Self-Phase Modulation 494</p> <p>Problems 495</p> <p><b>A Mathematics for Optics 497</b></p> <p>A.1 Spectral Analysis of Fluctuating Measurable Quantities 497</p> <p>A.2 Time Averaging Formula 502</p> <p>B.1 Temporal Evolution of a Two-State System 503</p> <p>B.2 Density Matrix Formalism 504</p> <p>B.3 Density of States 505</p> <p>Bibliography 507</p> <p>Index 519</p>
Dieter Meschede studied physics in several places including Hannover, Cologne, Boulder, and Munich. He has been professor of experimental physics since 1990. At the University of Bonn his current scientific interests are directed towards light-matter interactions at the most elementary level, i.e. with single atoms and single photons for applications in quantum technology.
This new, updated and enlarged edition of the successful and exceptionally well-structured textbook features new chapters on such hot topics as optical angular momentum, microscopy beyond the resolution limit, metamaterials, femtocombs, and quantum cascade lasers. It provides comprehensive and coherent coverage of fundamental optics, laser physics, and important modern applications, while equally including some traditional aspects for the first time, such as the Collins integral or solid immersion lenses.<br> Written for newcomers to the topic who will benefit from the author's ability to explain difficult theories and effects in a straightforward and readily comprehensible way.

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €