Details

Optical Fiber Sensing Technologies


Optical Fiber Sensing Technologies

Principles, Techniques and Applications
1. Aufl.

von: Tiegen Liu, Junfeng Jiang, Kun Liu, Shuang Wang

295,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 26.10.2021
ISBN/EAN: 9783527822447
Sprache: englisch
Anzahl Seiten: 864

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Optical Fiber Sensing Technologies</ b> <p><b>Explore foundational and advanced topics in optical fiber sensing technologies</b> <p>In <i>Optical Fiber Sensing Technologies: Principles, Techniques, and Applications,</i> a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing. <p>The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge. <p>Ideal for anyone seeking to further the boundaries of the science of <i>optical fiber sensing or the technological applications for which these techniques are used, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications</i> also includes: <ul><li>Thorough introductions to optical fiber and optical devices, as well as optical fiber Bragg grating sensing technology </li> <li>Practical discussions of Extrinsic-Fabry-Perot-Interferometer-based optical fiber sensing technology, acoustic sensing technology, and high-temperature sensing technology </li> <li>Comprehensive explorations of assemble free micro-interferometer-based optical fiber sensing technology </li> <li>In-depth examinations of optical fiber intra-cavity laser gas sensing technology </li></ul> <p>Perfect for applied and semiconductor physicists, <i>Optical Fiber Sensing Technologies: Principles, Techniques, and Applications</i> is also an invaluable resource for professionals working in the semiconductor, optical, and sensor industries, as well as materials scientists and engineers for measurement and control.
CHAPTER 1 OPTICAL FIBER AND OPTICAL DEVICES<br> 1.1 Optical Fiber<br> 1.2 Light Source<br> 1.2.1 Semiconductor Laser<br> 1.2.2 Optical Fiber Laser<br> 1.3 Optical Amplifier<br> 1.3.1 Erbium Doped Fiber Amplifier<br> 1.3.2 Semiconductor Optical Amplifier<br> 1.4 Detector<br> 1.5 Optical Fiber Passive Device<br> 1.5.1 Optical Fiber Coupler<br> 1.5.2 Optical Fiber Isolator<br> 1.5.3 Optical Fiber Circulator<br> 1.5.4 Optical Fiber Polarizer<br> 1.5.5 Optical Fiber Switcher<br> 1.6 Optical Fiber Modulator<br> <br> CHAPTER 2 OPTICAL FIBER BRAGG GRATING SENSING TECHNOLOGY<br> 2.1 Principle of Fiber Bragg Grating Sensing <br> 2.2 Photosensitivity of Ge-Doped Fiber<br> 2.3 Fabrication of Fiber Bragg Grating<br> 2.4 Package Design for Strain and Temperature Sensing<br> 2.4.1 Package Design for Strain Sensing<br> 2.4.2 Package Design for Temperature Sensing<br> 2.4.3 Performance Evaluation Under Cryogenic Temperature<br> 2.5 Demodulation of Fiber Bragg Grating Sensing for Space Application<br> 2.5.1 Demodulation Theory of Fiber Bragg Grating Sensing <br> 2.5.2 Demodulation Instrument Development <br> 2.5.3 Effect of Environment Temperature Variation <br> <br> CHAPTER 3 EXTRINSIC-FABRY-PEROT-INTERFEROMETER-BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 3.1 Principle of Fabry-Perot Interferometer<br> 3.2 Fabry-Perot Interferometer Based Optical Fiber Sensor Structure<br> 3.3 Silicon-Diaphragm Optical Fiber Sensor <br> 3.3.1 Silicon-Diaphragm Optical Fiber Pressure Sensor<br> 3.3.2 Silicon-Diaphragm Optical Fiber Temperature Sensor<br> 3.3.3 Non-Intrusive Optical Fiber Sensor Head Chip Inspection Method<br> 3.4 Polarization Low Coherence Interference Demodulation for Pressure Sensing<br> 3.4.1 Demodulation Theory <br> 3.4.2 Demodulation Instrument<br> 3.4.3 Demodulation Algorithm<br> 3.4.4 Low Coherence Interference Multiplexing <br> 3.5 Application<br> 3.5.1 Optical Fiber Pressure Sensing in Ocean Application <br> 3.5.2 Optical Fiber Pressure Sensing in Aviation Application<br> <br> CHAPTER 4 EXTRINSIC-FABRY-PEROT-INTERFEROMETER-BASED OPTICAL FIBER ACOUSTIC SENSING TECHNOLOGY<br> 4.1 Polymer-Diaphragm<br> 4.2 Senor Design and Parameters Optimization <br> 4.3 Demodulation<br> 4.3.1 Quadrature Phase Demodulation Theory<br> 4.3.2 Dual-Laser Quadrature Phase Demodulation Instrument<br> 4.3.3 Phase-Shifting Demodulation Instrument Using Birefringence Crystals<br> 4.4 Optical Fiber Acoustic Sensing in Space Application<br> <br> CHAPTER 5 EXTRINSIC-FABRY-PEROT-INTERFEROMETER-BASED OPTICAL FIBER HIGH TEMPERATURE SENSING TECHNOLOGY<br> 5.1 Sapphire Material Characteristic and Solid Cavity<br> 5.2 Sensor Design and Parameters Optimization<br> 5.3 Spectrum Demodulation Theory<br> 5.4 Spectrum Demodulation Instrument<br> 5.5 Optical Fiber High Temperature Sensing in Aviation Application<br> <br> CHAPTER 6 ASSEMBLE FREE MICRO-INTERFEROMETER?BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 6.1 Optical Fiber Sensor Based on Fiber Tip Micro-Michelson Interferometer <br> 6.2 Optical Fiber Sensor Based on Angled Fiber End<br> 6.3 Optical Fiber Sensor Based on In-Line Interferometer<br> <br> CHAPTER 7 SURFACE-PLASMON-RESONANCE-BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 7.1 Coating of Optical Fiber<br> 7.2 Theoretical Modeling Multimode Optical Fiber Sensor Based on SPR <br> 7.3 EMD-Based Filtering Algorithm<br> <br> CHAPTER 8 SAGNAC-INTERFEROMETER-BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 8.1 Principle of Sagnac Interferometer<br> 8.2 Optical Fiber Gyroscope <br> 8.3 The Optical Fiber Coil Quality Inspection Method <br> 8.3.1 Group Birefringence Thermal Coefficient of Polarization-Maintaining Fibers<br> 8.3.2 Optical Fiber Coil Winding Method<br> 8.3.3 Polarization Crosstalk Measurement<br> 8.3.4 Transient Characteristics Measurement with Temperature Stimulation<br> 8.4 Optical Fiber Current Sensing <br> <br> CHAPTER 9 MODE-INTERFERENCE-BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 9.1 Mode Interference Theory of Singlemode-Multimode-Singlemode <br> 9.2 Optical Fiber Refractive Index Sensor Based on SMS<br> 9.2.1 Sensor Design and Fabrication<br> 9.2.2 Self-Temperature-Compensation Sensing<br> 9.2.3 Simultaneous Refractive Index and Temperature Sensing<br> 9.3 Optical Fiber Magnetic Field Sensor Based on SMS<br> 9.3.1 Magnetic Fluid <br> 9.3.2 Sensor Design and Fabrication<br> 9.3.3 Simultaneous Magnetic Field and Temperature Sensing<br> <br> CHAPTER 10 WHISPER-GALLERY-MODE-BASED OPTICAL FIBER SENSING TECHNOLOGY<br> 10.1 Whisper-Gallery-Mode Theory<br> 10.2 Process of Micro Capillary With Inner Pressure Air<br> 10.2.1 Drawing System and Drawing Model<br> 10.2.2 Fabrication of Microtube<br> 10.2.3 Fabrication of Hollow Microsphere<br> 10.3 Optical Fiber Magnetic Field Sensor Based on Microtube WGM<br> 10.3.1 Magnetic Nanoparticle Assembly <br> 10.3.2 Sensor Fabrication and Measurement<br> 10.4 Optical Fiber Dual Parameters Sensor Based on Hollow Microsphere WGM<br> 10.5 Ultraprecise Resonance Wavelength Determination Method<br> <br> CHAPTER 11 OPTICAL FIBER INTRA-CAVITY LASER GAS SENSING TECHNOLOGY<br> 11.1 Theory of Optical Fiber Intra-Cavity Laser Gas Sensing<br> 11.1.1 Principle of Optical Fiber Laser<br> 11.1.2 Sensitivity Enhancement of Gas Sensing by Direct Absorption<br> 11.1.3 Optical Fiber Intra-Cavity Laser Gas Sensing by Wavelength Modulation<br> 11.1.4 Effect of Temperature on Performance of Gas Sensing<br> 11.2 Optical Fiber Intra-Cavity Laser Gas Sensing System Design<br> 11.3 Spectrum Signal Process <br> 11.3.1 De-Noise with EMD<br> 11.3.2 Baseline Extraction<br> 11.3.3 Spectrum Separation <br> 11.3.4 Concentration Demodulation<br> 11.4 Wavelength Calibration Analysis and Gas Recognition<br> <br> CHAPTER 12 OPTICAL FIBER BASED OPTICAL COHERENCE TOMOGRAPHY <br> 12.1 Optical Fiber Coherence Tomography Theory <br> 12.1.1 Time-Domain Optical Fiber Based Optical Coherence Tomography<br> 12.1.2 Frequency-Domain Optical Fiber Based Optical Coherence Tomography <br> 12.2 Functional Optical Fiber Based Optical Coherence Tomography <br> 12.2.1 Doppler Optical Coherence Tomography<br> 12.2.2 Polarization Sensitive Optical Coherence Tomography <br> 12.3 Biomedical Applications<br> 12.3.1 Dentistry<br> 12.3.2 Cardiovasology<br> 12.3.3 Neurology<br> <br> CHAPTER 13 DISCRETE OPTICAL FIBER SENSING NETWORK TECHNOLOGY<br> 13.1 Topology of Optical Fiber Sensing Network <br> 13.2 Robustness Evaluation of Optical Fiber Sensing Network<br> 13.2.1 Robustness Evaluation Model<br> 13.2.2 Robustness Affection Factor<br> 13.2.3 Optimization Arrangement<br> <br> CHAPTER 14 DISTRIBUTED VIBRATION SENSING BASED ON DUAL MACH-ZEHNDER INTERFEROMETER<br> 14.1 Theory of Distributed Vibration Sensing Based on Dual Mach-Zehnder Interferometer<br> 14.1.1 Principle of System<br> 14.1.2 Performance Affection Factor<br> 14.2 Polarization Control Method <br> 14.2.1 Polarization-Induced Phase Shift and Polarization-Induced Fading<br> 14.2.2 Chaotic Particle Swarm Optimization Algorithm <br> 14.2.3 Genetic Algorithm<br> 14.2.4 Annealing Algorithm<br> 14.3 Interferometer Based Distributed Vibration Sensing Instrument Design<br> 14.4 Signal Process Algorithm and Instrument<br> 14.3.1 Endpoint Detection<br> 14.3.2 Position Determination <br> 14.3.3 Intrusion Pattern Recognition <br> <br> CHAPTER 15 REGIONAL STYLE INTELLIGENT PERIMETER SECURITY TECHNIQUE BASE ON MICHELSON INTERFEROMETER<br> 15.1 Principle of System<br> 15.2 Instrument Design<br> 15.3 Perimeter Security Application <br> <br> CHAPTER 16 DISTRIBUTED TEMPERATURE SENSING BASED ON RAMAN SCATTERING<br> 16.1 Raman Scattering Theory <br> 16.2 Principle of System<br> 16.3 Systemn Design<br> 16.4 De-Noising Algorithm Based on EEMD<br> 16.5 Applicaion on Electric Power Industry<br> <br> CHAPTER 17 DISTRIBUTED ACOUSTIC SENSING BASED ON OPTICAL TIME DOMAIN REFLECTOMETRY<br> 17.1 Theory of Optical Time Domain Reflectometry<br> 17.1.1 Direct-Detection-Based Phase Optical Time Domain Reflectometry<br> 17.1.2 Coherent-Detection-Based Phase Optical Time Domain Reflectometry<br> 17.2 Pulse Modulation Method<br> 17.3 Acoustic Sensitivity Enhance Method of Optical Fiber<br> 17.4 Dual-Pulse Coherent Phase Optical Time Domain Reflectometry<br> 17.5 Chirp-Pulse Phase Optical Time Domain Reflectometry<br> <br> CHAPTER 18 DISTRIBUTED SENSING BASED ON OPTICAL FREQUENCY DOMAIN REFLECTOMETRY <br> 18.1 Principle of Optical Frequency Domain Reflectometry<br> 18.2 Measurement Range OFDR Beyond Laser Coherence Length<br> 18.3 Laser Frequency Tuning Nonlinearity and Compensation<br> 18.3.1 Laser Frequency Tuning Nonlinearity<br> 18.3.2 Compensation Using Non-Uniform Fast Fourier Transform<br> 18.3.3 Compensation Using Deskew Filter<br> 18.4 Distributed Sensing System and Application <br> 18.4.1 Distributed Vibration Sensing Base on Correlation Analysis <br> 18.4.2 Distributed Strain and Temperature Measurement <br> 18.4.3 Distributed Magnetic Field and Current Sensor Based on Magnetostriction <br> 18.4.4 Distributed Refractive Index Sensor Based on Taper Fiber
<p><b>Tiegen Liu, PhD,</b> is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.</p> <p><b>Junfeng Jiang, PhD,</b> is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.</p> <p><b>Kun Liu, PhD, </b>is Associate Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.</p> <p><b>Shuang Wang, PhD,</b> is Assistant Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.</p>
<p><b>Explore foundational and advanced topics in optical fiber sensing technologies</b></p> <p>In <i>Optical Fiber Sensing Technologies: Principles, Techniques, and Applications,</i> a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing. <p>The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge. <p>Ideal for anyone seeking to further the boundaries of the science of <i>optical fiber sensing or the technological applications for which these techniques are used, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications</i> also includes: <ul><li>Thorough introductions to optical fiber and optical devices, as well as optical fiber Bragg grating sensing technology </li> <li>Practical discussions of Extrinsic-Fabry-Perot-Interferometer-based optical fiber sensing technology, acoustic sensing technology, and high-temperature sensing technology </li> <li>Comprehensive explorations of assemble free micro-interferometer-based optical fiber sensing technology </li> <li>In-depth examinations of optical fiber intra-cavity laser gas sensing technology </li></ul> <p>Perfect for applied and semiconductor physicists, <i>Optical Fiber Sensing Technologies: Principles, Techniques, and Applications</i> is also an invaluable resource for professionals working in the semiconductor, optical, and sensor industries, as well as materials scientists and engineers for measurement and control.

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €