Details

OMICS-Based Approaches in Plant Biotechnology


OMICS-Based Approaches in Plant Biotechnology


1. Aufl.

von: Rintu Banerjee, Garlapati Vijay Kumar, S.P. Jeevan Kumar

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 28.02.2019
ISBN/EAN: 9781119509950
Sprache: englisch
Anzahl Seiten: 348

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Burgeoning world population, decreased water supply and land resources, coupled with climate change, result in severe stress conditions and a great threat to the global food supply. To meet these challenges, exploring Omics Technologies could lead to improved yields of cereals, tubers and grasses that may ensure food security. Improvement of yields through crop improvement and biotechnological means are the need-of-the-hour, and the current book “OMICS-Based Approaches in Plant Biotechnology”, reviews the advanced concepts on breeding strategies, OMICS technologies (genomics, transcriptomics and metabolomics) and bioinformatics that help to glean the potential candidate genes/molecules to address unsolved problems related to plant and agricultural crops. The first six chapters of the book are focused on genomics and cover sequencing, functional genomics with examples on insecticide resistant genes, mutation breeding and miRNA technologies. Recent advances in metabolomics studies are elucidated in the next 3 chapters followed by 5 chapters on bioinformatics and advanced techniques in plant biotechnology and crop breeding. The information contained in the volume will help plant breeders, plant biotechnologists, plant biochemists, agriculture scientists and researchers in using this applied research to focus on better crop breeding and stress adaptation strategies.
<p>Introduction xiii</p> <p><b>Part 1: Genomics 1</b></p> <p><b>1 Exploring Genomics Research in the Context of Some Underutilized Legumes—A Review 3<br /></b><i>Patrush Lepcha, Pittala Ranjith Kumar and N. Sathyanarayana</i></p> <p>1.1 Introduction 3</p> <p>1.2 Velvet Bean [<i>Mucuna pruriens</i> (L.) DC. var. utilis (Wall. ex Wight)] Baker ex Burck 4</p> <p>1.3 <i>Psophocarpus tetragonolobus</i> (L.) DC. 7</p> <p>1.4 <i>Vigna umbellata</i> (Thunb.) Ohwiet. Ohashi 8</p> <p>1.5 <i>Lablab purpureus</i> (L.) Sweet 9</p> <p>1.6 Avenues for Future Research 10</p> <p>1.7 Conclusions 12</p> <p>Acknowledgments 12</p> <p>References 12</p> <p><b>2 Overview of Insecticidal Genes Used in Crop Improvement Program 19<br /></b><i>Neeraj Kumar Dubey, Prashant Kumar Singh, Satyendra Kumar Yadav and Kunwar Deelip Singh</i></p> <p>2.1 Introduction 19</p> <p>2.2 Insect-Resistant Transgenic Model Plant 21</p> <p>2.3 Insect-Resistant Transgenic Dicot Plants 27</p> <p>2.4 Insect-Resistant Transgenic Monocot Plants 34</p> <p>2.5 Working Principle of Insecticidal Genes Used in Transgenic Plant Preparation 39</p> <p>2.6 Discussion 41</p> <p>References 42</p> <p><b>3 Advances in Crop Improvement: Use of miRNA Technologies for Crop Improvement 55<br /></b><i>Clarissa Challam, N. Nandhakumar and Hemant Balasaheb Kardile</i></p> <p>3.1 Introduction 56</p> <p>3.2 Discovery of miRNAs 56</p> <p>3.3 Evolution and Organization of Plant miRNAs 57</p> <p>3.4 Identification of Plant miRNAs 58</p> <p>3.5 miRNA vs. siRNA 59</p> <p>3.6 Biogenesis of miRNAs and Their Regulatory Action in Plants 60</p> <p>3.7 Application of miRNA for Crop Improvement 61</p> <p>3.8 Concluding Remarks 62</p> <p>References 70</p> <p><b>4 Gene Discovery by Forward Genetic Approach in the Era of High-Throughput Sequencing 75<br /></b><i>Vivek Thakur and Samart Wanchana</i></p> <p>4.1 Introduction 75</p> <p>4.2 Mutagens Differ for Type and Density of Induced Mutations 76</p> <p>4.3 High-Throughput Sequencing is Getting Better and Cheaper 77</p> <p>4.4 Mapping-by-Sequencing 77</p> <p>4.5 Different Mapping Populations for Specific Need 81</p> <p>4.6 Effect of Mutagen Type on Mapping 83</p> <p>4.7 Effect of Bulk Size and Sequencing Coverage on Mapping 83</p> <p>4.8 Challenges in Variant Calling 85</p> <p>4.9 Cases Where Genome Sequence is either Unavailable or Highly Diverged 85</p> <p>4.10 Bioinformatics Tools for Mapping-by-Sequencing Analysis 86</p> <p>Acknowledgments 87</p> <p>References 87</p> <p><b>5 Functional Genomics of Thermotolerant Plants 91<br /></b><i>Nagendra Nath Das</i></p> <p>5.1 Introduction 91</p> <p>5.2 Functional Genomics in Plants 93</p> <p>5.3 Thermotolerant Plants 94</p> <p>5.4 Studies on Functional Genomics of Thermotolerant Plants 98</p> <p>5.5 Concluding Remarks 99</p> <p>Abbreviations 100</p> <p>References 100</p> <p><b>Part 2: Metabolomics 105</b></p> <p><b>6 A Workflow in Single Cell-Type Metabolomics: From Data Pre-Processing and Statistical Analysis to Biological Insights 107<br /></b><i>Biswapriya B. Misra</i></p> <p>6.1 Introduction 108</p> <p>6.2 Methods and Data 109</p> <p>6.2.1 Source of Data 109</p> <p>6.2.2 Processing of Raw Mass Spectrometry Data 109</p> <p>6.2.3 Statistical Analyses 109</p> <p>6.2.4 Pathway Enrichment and Clustering Analysis 110</p> <p>6.3 Results 110</p> <p>6.3.1 Design of the Study and Data Analysis 110</p> <p>6.3.2 The Guard Cell Metabolomics Dataset 110</p> <p>6.3.3 Multivariate Analysis for Insights into Data Pre-Processing 113</p> <p>6.3.4 Effect of Data Normalization Methods 119</p> <p>6.4 Discussion 122</p> <p>6.5 Conclusion 124</p> <p>Conflicts of Interest 124</p> <p>Acknowledgment 125</p> <p>References 125</p> <p><b>7 Metabolite Profiling and Metabolomics of Plant Systems Using <sup>1</sup>H NMR and GC-MS 129<br /></b><i>Manu Shree, Maneesh Lingwan and Shyam K. Masakapalli</i></p> <p>7.1 Introduction 129</p> <p>7.2 Materials and Methods 131</p> <p>7.2.1 <sup>1</sup>H NMR-Based Metabolite Profiling of Plant Samples 132</p> <p>7.2.1.1 Metabolite Extraction 132</p> <p>7.2.1.2 <sup>1</sup>H NMR Spectroscopy 132</p> <p>7.2.1.3 Qualitative and Quantitative Analysis of NMR Signals 134</p> <p>7.2.2 Gas Chromatography–Mass Spectroscopy (GC-MS) Based Metabolite Profiling 134</p> <p>7.2.2.1 Sample Preparation 134</p> <p>7.2.2.2 GC-MS Data Acquisition 135</p> <p>7.2.2.3 GC-MS Data Pretreatment and Metabolite Profiling 136</p> <p>7.2.2.4 Validation of Identified Metabolites 136</p> <p>7.2.3 Multivariate Data Analysis 137</p> <p>7.3 Selected Applications of Metabolomics and Metabolite Profiling 139</p> <p>Acknowledgments 140</p> <p>Competing Interests 140</p> <p>References 140</p> <p><b>8 OMICS-Based Approaches for Elucidation of Picrosides Biosynthesis in <i>Picrorhiza kurroa</i> 145<br /></b><i>Varun Kumar</i></p> <p>8.1 Introduction 146</p> <p>8.2 Cross-Talk of Picrosides Biosynthesis Among Different Tissues of <i>P. kurroa</i> 148</p> <p>8.3 Strategies Used for the Elucidation of Picrosides Biosynthetic Route in P. kurroa 148</p> <p>8.3.1 Retro-Biosynthetic Approach 149</p> <p>8.3.2 <i>In Vitro</i> Feeding of Different Precursors and Inhibitors 149</p> <p>8.3.3 Metabolomics of Natural Variant Chemotypes of <i>P. kurroa</i> 150</p> <p>8.4 Strategies Used for Shortlisting Key/Candidate Genes Involved in Picrosides Biosynthesis 151</p> <p>8.4.1 Comparative Genomics 151</p> <p>8.4.2 Differential Next-Generation Sequencing (NGS) Transcriptomes and Expression Levels of Pathway Genes Vis-à-Vis Picrosides Content 152</p> <p>8.5 Complete Architecture of Picrosides Biosynthetic Pathway 153</p> <p>8.6 Challenges and Future Perspectives 161</p> <p>Abbreviations 162</p> <p>References 163</p> <p><b>9 Relevance of Poly-Omics in System Biology Studies of Industrial Crops 167<br /></b><i>Nagendra Nath Das</i></p> <p>9.1 Introduction 167</p> <p>9.2 System Biology of Crops 169</p> <p>9.3 Industrial Crops 171</p> <p>9.4 Poly-Omics Application in System Biology Studies of Industrial Crops 176</p> <p>9.5 Concluding Remarks 177</p> <p>Abbreviations 177</p> <p>References 178</p> <p><b>Part 3: Bioinformatics 183</b></p> <p><b>10 Emerging Advances in Computational Omics Tools for Systems Analysis of Gramineae Family Grass Species and Their Abiotic Stress Responsive Functions 185<br /></b><i>Pandiyan Muthuramalingam, Rajendran Jeyasri, Dhamodharan Kalaiyarasi, Subramani Pandian, Subramanian Radhesh Krishnan, Lakkakula Satish, Shunmugiah Karutha Pandian and Manikandan Ramesh</i></p> <p>10.1 Introduction 186</p> <p>10.2 Gramineae Family Grass Species 187</p> <p>10.2.1 <i>Oryza sativa</i> 187</p> <p>10.2.2 <i>Setaria italica</i> 187</p> <p>10.2.3 <i>Sorghum bicolor</i> 188</p> <p>10.2.4 <i>Zea mays</i> 188</p> <p>10.3 Abiotic Stress 188</p> <p>10.4 Emerging Sequencing Technologies 198</p> <p>10.4.1 NGS-Based Genomic and RNA Sequencing 199</p> <p>10.4.2 Tanscriptome Analysis Based on NGS 200</p> <p>10.4.3 High-Throughput Omics Layers 201</p> <p>10.5 Omics Resource in Poaceae Species 202</p> <p>10.6 Role of Functional Omics in Dissecting the Stress Physiology of Gramineae Members 203</p> <p>10.7 Systems Analysis in Gramineae Plant Species 204</p> <p>10.8 Nutritional Omics of Gramineae Species 205</p> <p>10.9 Future Prospects 205</p> <p>10.10 Conclusion 206</p> <p>Acknowledgments 207</p> <p>References 207</p> <p><b>11 OMIC Technologies in Bioethanol Production: An Indian Context 217<br /></b><i>Pulkit A. Srivastava and Ragothaman M. Yennamalli</i></p> <p>11.1 Introduction 217</p> <p>11.2 Indian Scenario 219</p> <p>11.3 Cellulolytic Enzymes Producing Bacterial Strains Isolated from India 220</p> <p>11.3.1 Bacillus Genus of Lignocellulolytic Degrading Enzymes 222</p> <p>11.3.2 Bhargavaea cecembensis 222</p> <p>11.3.3 Streptomyces Genus for Hydrolytic Enzymes 230</p> <p>11.4 Biomass Sources Native to India 230</p> <p>11.4.1 <i>Albizia lucida</i> (Moj) 230</p> <p>11.4.2 <i>Areca catechu</i> (Betel Nut) 231</p> <p>11.4.3 <i>Arundo donax</i> (Giant Reed) 231</p> <p>11.4.4 <i>Pennisetum purpureum</i> (Napier Grass) 231</p> <p>11.4.5 <i>Brassica</i> Family of Biomass Crops 231</p> <p>11.4.6 <i>Cajanus cajan</i> (Pigeon Pea)/<i>Cenchrus americanus</i> (Pearl Millet)/<i>Corchorus capsularis</i> (Jute)/</p> <p><i>Lens culinaris</i> (Lentil)/<i>Saccharum officinarum</i> (Sugarcane)/<i>Triticum </i>sp. (Wheat)/<i>Zea mays</i> (Maize) 232</p> <p>11.4.7 <i>Medicago sativa</i> (Alfalfa) 232</p> <p>11.4.8 <i>Manihot esculenta</i> (Cassava)/<i>Salix viminalis</i> (Basket Willow)/<i>Setaria italica</i> (Foxtail Millet)/ <i>Setaria viridis</i> (Green Foxtail) 232</p> <p>11.4.9 <i>Vetiveria zizanioides</i> (Vetiver or Khas) 232</p> <p>11.4.10 Millets and <i>Sorghum bicolor</i> (Sorghum) 233</p> <p>11.5 Omics Data and Its Application to Bioethanol Production 233</p> <p>11.6 Conclusion 239</p> <p>References 239</p> <p><b>Part 4: Advances in Crop Improvement: Emerging Technologies 245</b></p> <p><b>12 Genome Editing: New Breeding Technologies in Plants 247<br /></b><i>Kalyani M. Barbadikar, Supriya B. Aglawe, Satendra K. Mangrauthia, M. Sheshu Madhav and S.P. Jeevan Kumar</i></p> <p>12.1 Introduction: Genome Editing 248</p> <p>12.2 GE: The Basics 249</p> <p>12.2.1 Nonhomologous End-Joining (NHEJ) 250</p> <p>12.2.2 Homology Directed Repair (HR) 251</p> <p>12.3 Engineered Nucleases: The Key Players in GE 251</p> <p>12.3.1 Meganucleases 251</p> <p>12.3.2 Zinc-Finger Nucleases 256</p> <p>12.3.3 Transcription Activator-Like Effector Nucleases 257</p> <p>12.3.4 CRISPR/Cas System: The Forerunner 258</p> <p>12.4 Targeted Mutations and Practical Considerations 259</p> <p>12.4.1 Targeted Mutations 259</p> <p>12.4.2 Steps Involved 260</p> <p>12.4.2.1 Selection of Target Sequence 261</p> <p>12.4.2.2 Designing Nucleases 262</p> <p>12.4.2.3 Transformation 263</p> <p>12.4.2.4 Screening for Mutation 264</p> <p>12.5 New Era: CRISPR/Cas9 264</p> <p>12.5.1 Vector Construction 264</p> <p>12.5.2 Delivery Methods 266</p> <p>12.5.3 CRISPR/Cas Variants 266</p> <p>12.5.3.1 SpCas9 Nickases (nSpCas9) 266</p> <p>12.5.3.2 Cas9 Variant without Endonuclease Activity 266</p> <p>12.5.3.3 FokI Fused Catalytically Inactive Cas9 267</p> <p>12.5.3.4 Naturally Available and Engineered Cas9 Variants with Altered PAM 268</p> <p>12.5.3.5 Cas9 Variants for Increased On-Target Effect 268</p> <p>12.5.3.6 CRISPR/Cpf1 268</p> <p>12.6 GE for Improving Economic Traits 269</p> <p>12.6.1 Development of Next-Generation Smart Climate Resilient Crops 271</p> <p>12.6.2 Breaking Yield Incompatibility Barriers and Hybrid Breeding 271</p> <p>12.6.3 Creating New Variation through Engineered QTLs 271</p> <p>12.6.4 Transcriptional Regulation 272</p> <p>12.6.5 GE for Noncoding RNA, microRNA 272</p> <p>12.6.6 Epigenetic Modifications 273</p> <p>12.6.7 Gene Dosage Effect 273</p> <p>12.7 Biosafety of GE Plants 273</p> <p>12.8 What’s Next: Prospects 276</p> <p>References 276</p> <p><b>13 Regulation of Gene Expression by Global Methylation Pattern in Plants Development 287<br /></b><i>Vrijesh Kumar Yadav, Krishan Mohan Rai, Nishant Kumar and Vikash Kumar Yadav</i></p> <p>13.1 Introduction 288</p> <p>13.2 Nucleic Acid Methylation Targets in the Genome 289</p> <p>13.3 Nucleic Acid Methyl Transferase (DNMtase) 290</p> <p>13.4 Genomic DNA Methylation and Expression Pattern 291</p> <p>13.5 Pattern of DNA Methylation in Early Plant Life 292</p> <p>13.6 DNA Methylation Pattern in Mushroom 293</p> <p>13.7 Methylation Pattern in Tumor 294</p> <p>13.8 DNA Methylation Analysis Approaches 294</p> <p>13.8.1 Locus-Specific DNA Methylation 295</p> <p>13.8.2 Genome-Wide and Global DNA Methylation 295</p> <p>13.8.3 Whole Genome Sequence Analysis by Bioinformatics Analysis 296</p> <p>References 297</p> <p><b>14 High-Throughput Phenotyping: Potential Tool for Genomics 303<br /></b>Kalyani M. Barbadikar, Divya Balakrishnan, C. Gireesh, Hemant Kardile, Tejas C. Bosamia and Ankita Mishra</p> <p>14.1 Introduction 304</p> <p>14.2 Relation of Phenotype, Genotype, and Environment 304</p> <p>14.3 Features of HTP 306</p> <p>14.4 HTP Pipeline and Platforms 310</p> <p>14.5 Controlled Environment-Based Phenotyping 311</p> <p>14.6 Field-Based High-Throughput Plant Phenotyping (Fb-HTPP) 311</p> <p>14.7 Applications of HTP 313</p> <p>14.7.1 Marker-Assisted Selection and QTL Detection 314</p> <p>14.7.2 Forward and Reverse Genetics 315</p> <p>14.7.3 New Breeding Techniques 315</p> <p>14.7.3.1 Envirotyping 315</p> <p>14.8 Conclusion and Future Thrust 316</p> <p>References 316</p> <p>Index 323</p>
<p><b>Rintu Banerjee</b>, Ex-MNRE- Chair-Professor, Indian Institute of Technology, Kharagpur has created a niche of her own in the area of Biomass Deconstruction/Biofuel Production/Enzyme Technology. In the process of her innovative development, she was granted 8 Indian, 3 international (US, Japanese and Chinese) patents. She has published more than 180 papers in peer-reviewed national/international journals. <p><b>Garlapati Vijay Kumar</b> is an Assistant Professor at the Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India. He has 3 patents, 33 research articles in peer-reviewed journals and 10 book chapters to his credit. His research interest areas are: Bioprocess engineering / industrial biotechnology, deployment of OMICS technologies for crop improvement, fermentation technology, biofuels, and biocatalysis. <p><b>S.P. Jeevan Kumar</b> is a scientist in ICAR-Indian Institute of Seed Science, Mau, U.P, India. His interests include OMICS technologies for plant biotechnology, crop improvement, seed deterioration mechanisms, genetic purity and bioenergy. He has published 25 papers in peer-reviewed journals and multiple book chapters.
<p><b>The book provides a detailed description of how OMICS can help crop science and horticulture to enhance crop yields, resistance and nutritional values.</b> <p>Burgeoning world population, decreased water supply and land resources, coupled with climate change, result in severe stress conditions which is a great threat to the global food supply. To meet these challenges, exploring OMICS technologies could lead to improved yields of cereals, tubers and grasses that may ensure food security. Improvement of yields through crop improvement and biotechnological means are the need-of-the-hour, and the current book "OMICS-Based Approaches in Plant Biotechnology", reviews the advanced concepts on breeding strategies, OMICS technologies (genomics, transcriptomics and metabolomics) and bioinformatics that help to glean the potential candidate genes/molecules to address unsolved problems related to plant and agricultural crops. The first six chapters of the book are focused on genomics and cover sequencing, functional genomics with examples on insecticide resistant genes, mutation breeding and miRNA technologies. Recent advances in metabolomics studies are elucidated in the next 3 chapters followed by 5 chapters on bioinformatics and advanced techniques in plant biotechnology and crop breeding. <p><b>Audience</b> <p>The information contained in the volume will help plant breeders, plant biotechnologists, plant biochemists, agriculture scientists and researchers as well as policy makers in using this applied research to focus on better crop breeding and stress adaptation strategies.

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €