Details

Oil and Gas Pipelines


Oil and Gas Pipelines

Integrity and Safety Handbook
1. Aufl.

von: R. Winston Revie

177,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 01.04.2015
ISBN/EAN: 9781119019190
Sprache: englisch
Anzahl Seiten: 864

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive and detailed reference guide on the integrity and safety of oil and gas pipelines, both onshore and offshore<br /><br /> <ul> <li>Covers a wide variety of topics, including design, pipe manufacture, pipeline welding, human factors, residual stresses, mechanical damage, fracture and corrosion, protection, inspection and monitoring, pipeline cleaning, direct assessment, repair, risk management, and abandonment</li> <li>Links modern and vintage practices to help integrity engineers better understand their system and apply up-to-date technology to older infrastructure</li> <li>Includes case histories with examples of solutions to complex problems related to pipeline integrity</li> <li>Includes chapters on stress-based and strain-based design, the latter being a novel type of design that has only recently been investigated by designer firms and regulators</li> <li>Provides information to help those who are responsible to establish procedures for ensuring pipeline integrity and safety</li> </ul>
<p>Preface xxxi</p> <p>Contributors xxxiii</p> <p><b>Part I Design<br /> <br /> 1 Pipeline Integrity Management Systems (PIMS) 3 <br /> </b><i>Ray Goodfellow and Katherine Jonsson</i></p> <p>1.1 Introduction 3</p> <p>1.2 Lessons Learned and the Evolution of Pipeline Integrity 4</p> <p>1.3 What Is a PIMS? 4</p> <p>1.4 Regulatory Requirements 5</p> <p>1.5 Core Structure and PIMS Elements 6</p> <p>1.6 PIMS Function Map 8</p> <p>1.7 Plan: Strategic and Operational 8</p> <p>1.8 Do: Execute 9</p> <p>1.9 Check: Assurance and Verification 10</p> <p>1.10 Act: Management Review 10</p> <p>1.11 Culture 11</p> <p>1.12 Summary 11</p> <p>References 11</p> <p><b>2 SCADA: Supervisory Control and Data Acquisition 13<br /> </b><i>Michael VanderZee, Doug Fisher, Gail Powley, and Rumi Mohammad</i></p> <p>2.1 Introduction 13</p> <p>2.2 SCADA Computer Servers 14</p> <p>2.3 SCADA Computer Workstations 14</p> <p>References 26</p> <p><b>3 Material Selection for Fracture Control 27<br /> </b><i>William Tyson</i></p> <p>3.1 Overview of Fracture Control 27</p> <p>3.2 Toughness Requirements: Initiation 28</p> <p>References 34</p> <p><b>4 Strain-Based Design of Pipelines 37<br /> </b><i>Nader Yoosef-Ghodsi</i></p> <p>4.1 Introduction and Basic Concepts 37</p> <p>4.1.1 Overview of Strain-Based Design 37</p> <p>4.5 Summary 46</p> <p>References 46</p> <p><b>5 Stress-Based Design of Pipelines 49<br /> </b><i>Mavis Sika Okyere</i></p> <p>5.1 Introduction 49</p> <p>5.2 Design Pressure 49</p> <p>5.13 Summary 64</p> <p>References 65</p> <p><b>6 Spiral Welded Pipes for Shallow Offshore Applications 67<br /> </b><i>Ayman Eltaher</i></p> <p>6.1 Introduction 67</p> <p>6.2 Limitations of the Technology Feasibility 68</p> <p>6.3 Challenges of Offshore Applications 68</p> <p>6.3.1 Design Challenges 68</p> <p>6.3.2 Stress Analysis Challenges 68</p> <p>6.3.3 Materials and Manufacturing Challenges 69</p> <p>6.4 Typical Pipe Properties 70</p> <p>6.5 Technology Qualification 70</p> <p>6.6 Additional Resources 71</p> <p>6.7 Summary 71</p> <p>References 71</p> <p><b>7 Residual Stress in Pipelines 73<br /> </b><i>Paul Prevéy and Douglas Hornbach</i></p> <p>7.1 Introduction 73</p> <p>7.1.1 The Nature of Residual Stresses 73</p> <p>7.1.2 Sources of Residual Stresses 74</p> <p>7.2 The Influence of Residual Stresses on Performance 76</p> <p>7.2.1 Fatigue 77</p> <p>7.2.2 Stress Corrosion Cracking 78</p> <p>References 96</p> <p><b>8 Pipeline/Soil Interaction Modeling in Support of Pipeline Engineering Design and Integrity 99<br /> </b><i>Shawn Kenny and Paul Jukes</i></p> <p>8.1 Introduction 99</p> <p>8.2 Site Characterization and Geotechnical Engineering in Relation to Pipeline System Response Analysis 101</p> <p>8.2.1 Overview 101</p> <p>8.2.2 Pipeline Routing 102</p> <p>Acknowledgments 130</p> <p>References 130</p> <p><b>9 Human Factors 143<br /> </b><i>Lorna Harron</i></p> <p>9.1 Introduction 143</p> <p>9.2 What Is “Human Factors”? 143</p> <p>9.3 Life Cycle Approach to Human Factors 143</p> <p>9.9 Summary 154</p> <p>References 155</p> <p>Bibliography 155</p> <p><b>Part II Manufacture, Fabrication, and Construction<br /> <br /> 10 Microstructure and Texture Development in Pipeline Steels 159<br /> </b><i>Roumen H. Petrov, John J. Jonas, Leo A.I. Kestens, and J. Malcolm Gray</i></p> <p>10.1 Introduction 159</p> <p>10.2 Short History of Pipeline Steel Development 160</p> <p>10.5 Summary 182</p> <p>Acknowledgments 183</p> <p>References 183</p> <p><b>11 Pipe Manufacture—Introduction 187<br /> </b><i>Gerhard Knauf and Axel Kulgemeyer</i></p> <p>11.1 Pipe Manufacturing Background 187</p> <p>11.2 Current Trends in Line Pipe Manufacturing 187</p> <p>References 188</p> <p><b>12 Pipe Manufacture—Longitudinal Submerged Arc Welded Large Diameter Pipe 189<br /> </b><i>Christoph Kalwa</i></p> <p>12.1 Introduction 189</p> <p>12.2 Manufacturing Process 189</p> <p>12.3 Quality Control Procedures 191</p> <p>12.4 Range of Grades and Dimensions 192</p> <p>12.5 Typical Fields of Application 192</p> <p><b>13 Pipe Manufacture—Spiral Pipe 195<br /> </b><i>Franz Martin Knoop</i></p> <p>13.1 Manufacturing Process 195</p> <p>13.2 Quality Control Procedures 198</p> <p>13.3 Range of Grades and Dimensions 198</p> <p>13.4 Typical Fields of Applicability 200</p> <p>References 201</p> <p><b>14 Pipe Manufacture—ERW Pipe 203<br /> </b><i>Holger Brauer and Hendrik Löbbe</i></p> <p>14.1 Introduction 203</p> <p>14.2 Manufacturing Process 203</p> <p>14.3 Quality Control Procedures 204</p> <p>14.3.1 Welding Line 205</p> <p>14.3.2 Finishing Line 206</p> <p>14.3.3 Destructive Material Testing 208</p> <p>14.4 Range of Grades and Dimensions 208</p> <p>14.5 Typical Fields of Applicability 208</p> <p>References 209</p> <p><b>15 Pipe Manufacture—Seamless Tube and Pipe 211<br /> </b><i>Rolf Kümmerling and Klaus Kraemer</i></p> <p>15.1 The Rolling Process 211</p> <p>15.1.1 Introduction and History 211</p> <p>15.1.2 Cross Rolling Technology 212</p> <p>15.1.3 Pilger Rolling 213</p> <p>15.1.4 Plug Rolling 215</p> <p>15.1.5 Mandrel Rolling 216</p> <p>15.1.6 Forging 218</p> <p>15.1.7 Size Rolling and Stretch Reducing 218</p> <p>15.2 Further Processing 219</p> <p>15.2.1 Heat Treatment 219</p> <p>15.2.2 Quality and In-Process Checks 221</p> <p>15.2.3 Finishing Lines 221</p> <p>References 222</p> <p><b>16 Major Standards for Line Pipe Manufacturing and Testing 223<br /> </b><i>Gerhard Knauf and Axel Kulgemeyer</i></p> <p>16.1 API SPEC 5L/ISO 3183 223</p> <p>16.2 CSA Z662-11: <i>Oil and Gas Pipeline Systems</i> 223</p> <p>References 224</p> <p><b>17 Design of Steels for Large Diameter Sour Service Pipelines 225<br /> </b><i>Nobuyuki Ishikawa</i></p> <p>17.1 Introduction 225</p> <p>17.2 Hydrogen-Induced Cracking of Linepipe Steel and Evaluation Method 225</p> <p>17.2.1 Hydrogen-Induced Cracking in Full-Scale Test 225</p> <p>17.2.2 Standardized Laboratory Evaluation Method for HIC 227</p> <p>17.2.3 Mechanisms of Hydrogen-Induced Cracking 227</p> <p>17.3 Material Design of Linepipe Steel for Sour Service 228</p> <p>17.3.1 Effect of Nonmetallic Inclusions 228</p> <p>17.3.2 Effect of Center Segregation 229</p> <p>17.3.3 Effect of Plate Manufacturing Condition 229</p> <p>References 230</p> <p><b>18 Pipeline Welding from the Perspective of Safety and Integrity 233<br /> </b><i>David Dorling and James Gianetto</i></p> <p>18.1 Introduction 233</p> <p>18.2 Construction Welding Applications 234</p> <p>18.2.1 Double-Joint Welding 234</p> <p>18.2.2 Mainline Welding 234</p> <p>18.2.3 Tie-In and Repair Welding 236</p> <p>18.3 Nondestructive Inspection and Flaw Assessment 237</p> <p>18.4 Welding Procedure and Welder Qualification 239</p> <p>18.4.1 Welding Codes and Standards 239</p> <p>18.4.2 Welding Procedures 239</p> <p>18.4.3 Welding Procedure Specification 239</p> <p>18.4.4 Procedure Qualification Record 240</p> <p>18.4.5 Qualification of Welders 240</p> <p>18.5 Hydrogen Control in Welds and the Prevention of Hydrogen-Assisted Cracking 240</p> <p>18.6 Important Considerations for Qualifying Welding Procedures to a Strain-Based Design 242</p> <p>18.7 Welding on In-Service Pipelines 243</p> <p>18.8 Pipeline Incidents Arising from Welding Defects and Recent Industry and Regulatory Preventative Action 245</p> <p>Appendix 18.A: Abbreviations Used in This Chapter 247</p> <p>Appendix 18.B: Regulations, Codes, and Standards 247</p> <p>References 248</p> <p><b>19 The Effect of Installation on Offshore Pipeline Integrity 253<br /> </b><i>Robert O’Grady</i></p> <p>19.1 Introduction 253</p> <p>19.2 Installation Methods and Pipeline Behaviour During Installation 253</p> <p>19.2.1 Pipeline Installation Loading and Failure Modes 253</p> <p>19.2.2 S-Lay Method 254</p> <p>19.2.3 J-Lay Method 256</p> <p>19.2.4 Reel-Lay Method 256</p> <p>19.3 Critical Factors Governing Installation 257</p> <p>19.3.1 Vessel Restrictions 257</p> <p>19.3.2 Pipeline Integrity Criteria 257</p> <p>19.4 Installation Analysis and Design Methodologies 259</p> <p>19.4.1 Global Installation Analysis 259</p> <p>19.4.2 Methodologies 259</p> <p>19.5 Monitoring the Installation Process Offshore 261</p> <p>19.5.1 Monitoring Process and Remedial Action 261</p> <p>19.5.2 Monitoring Analysis Software 261</p> <p>19.6 Implications of Deeper Water on Installation 261</p> <p>19.6.1 Increased Tension and Potential for Local Buckling 261</p> <p>19.6.2 Plastic Strains 262</p> <p>19.6.3 Prolonged Fatigue Exposure 262</p> <p>19.6.4 Design Implications 262</p> <p>Reference 262</p> <p>Bibliography 262</p> <p><b>Part III Threats to Integrity and Safety<br /> <br /> 20 External Corrosion of Pipelines in Soil 267<br /> </b><i>Homero Castaneda and Omar Rosas</i></p> <p>20.1 Introduction 267</p> <p>20.2 Background 267</p> <p>References 273</p> <p><b>21 Telluric Influence on Pipelines 275<br /> </b><i>David H. Boteler and Larisa Trichtchenko</i></p> <p>21.1 Introduction 275</p> <p>21.2 Review of the Existing Knowledge on Pipeline-Telluric Interference 275</p> <p>21.3 Geomagnetic Sources of Telluric Activity 276</p> <p>21.4 Earth Resistivity Influence on Telluric Activity 278</p> <p>21.5 Pipeline Response to Telluric Electric Fields 278</p> <p>21.6 Telluric Hazard Assessment 279</p> <p>21.6.1 Geomagnetic Activity 279</p> <p>21.6.2 Earth Conductivity Structure 280</p> <p>21.6.3 Pipeline Response 280</p> <p>21.7 Mitigation/Compensation of Telluric Effects 281</p> <p>21.8 Knowledge Gaps/Open Questions 283</p> <p>21.9 Summary 283</p> <p>Acknowledgments 285</p> <p>References 285</p> <p><b>22 Mechanical Damage in Pipelines: A Review of the Methods and Improvements in Characterization, Evaluation, and Mitigation 289<br /> </b><i>Ming Gao and Ravi Krishnamurthy</i></p> <p>22.1 Introduction 289</p> <p>22.2 Current Status of In-Line Inspection (ILI) Technologies for Mechanical Damage Characterization 290</p> <p>References 322</p> <p><b>23 Progression of Pitting Corrosion and Structural Reliability of Welded Steel Pipelines 327<br /> </b><i>Robert E. Melchers</i></p> <p>23.1 Introduction 327</p> <p>23.2 Asset Management and Prediction 328</p> <p>23.3 Pitting 328</p> <p>Acknowledgments 339</p> <p>References 339</p> <p><b>24 Sulfide Stress Cracking 343<br /> </b><i>Russell D. Kane</i></p> <p>24.1 Introduction 343</p> <p>24.2 What Is Sulfide Stress Cracking? 343</p> <p>References 351</p> <p><b>25 Stress Corrosion Cracking of Steel Equipment in Ethanol Service 353<br /> </b><i>Russell D. Kane</i></p> <p>25.1 Introduction 353</p> <p>25.2 Factors Affecting Susceptibility to Ethanol SCC 353</p> <p>References 360</p> <p>Bibliography of Additional eSCC Papers 361</p> <p><b>26 AC Corrosion 363<br /> </b><i>Lars Vendelbo Nielsen</i></p> <p>26.1 Introduction 363</p> <p>26.2 Basic Understanding 363</p> <p>26.2.1 The Spread Resistance 365</p> <p>26.2.2 The Effect of AC on DC Polarization 368</p> <p>26.2.3 The Vicious Circle of AC Corrosion—Mechanistic Approach 370</p> <p>26.3 AC Corrosion Risk Assessment and Management 373</p> <p>26.3.1 Criteria 373</p> <p>26.3.2 Current Criteria 373</p> <p>26.3.3 Mitigation Measures 374</p> <p>26.3.4 Monitoring and Management 379</p> <p>References 382</p> <p>Bibliography 382</p> <p><b>27 Microbiologically Influenced Corrosion 387<br /> </b><i>Brenda J. Little and Jason S. Lee</i></p> <p>27.1 Introduction 387</p> <p>27.2 Requirements for Microbial Growth 388</p> <p>27.6 Conclusions 395</p> <p>Acknowledgments 395</p> <p>References 395</p> <p><b>28 Erosion–Corrosion in Oil and Gas Pipelines 399<br /> </b><i>Siamack A. Shirazi, Brenton S. McLaury, John R. Shadley, Kenneth P. Roberts, Edmund F. Rybicki, Hernan E. Rincon, Shokrollah Hassani, Faisal M. Al-Mutahar, and Gusai H. Al-Aithan</i></p> <p>28.1 Introduction 399</p> <p>28.2 Solid Particle Erosion 401</p> <p>28.7 Summary and Conclusions 419</p> <p>Acknowledgments 419</p> <p>References 419</p> <p><b>29 Black Powder in Gas Transmission Pipelines 423<br /> </b><i>Abdelmounam M. Sherik</i></p> <p>29.1 Introduction 423</p> <p>29.2 Internal Corrosion of Gas Transmission Pipelines 425</p> <p>29.9 Summary 434</p> <p>Acknowledgments 435</p> <p>References 435</p> <p><b>Part IV Protection<br /> <br /> 30 External Coatings 439<br /> </b><i>Doug Waslen</i></p> <p>30.1 Introduction and Background 439</p> <p>30.2 Coating Performance 439</p> <p>Reference 446</p> <p><b>31 Thermoplastic Liners for Oilfield Pipelines 447<br /> </b><i>Jim Mason</i></p> <p>31.1 Introduction 447</p> <p>31.2 Codes and Standards 447</p> <p>References 454</p> <p><b>32 Cathodic Protection 457<br /> </b><i>Sarah Leeds and John Leeds</i></p> <p>32.1 Introduction 457</p> <p>32.2 Historical Foundation of Cathodic Protection 457</p> <p>References 482</p> <p><b>Part V Inspection and Monitoring<br /> <br /> 33 Direct Assessment 487<br /> </b><i>John A. Beavers, Lynsay A. Bensman, and Angel R. Kowalski</i></p> <p>33.1 Introduction 487</p> <p>33.2 External Corrosion DA (ECDA) 488</p> <p>References 493</p> <p><b>34 Internal Corrosion Monitoring Using Coupons and ER Probes 495<br /> </b><i>Daniel E. Powell</i></p> <p>34.1 Introduction—Corrosion Monitoring Using Coupons and ER Probes 495</p> <p>34.1.1 Corrosion—A Definition 496</p> <p>References 513</p> <p><b>35 In-Line Inspection (ILI) (“Intelligent Pigging”) 515<br /> </b><i>Neb I. Uzelac</i></p> <p>35.1 Introduction 515</p> <p>35.2 Place of ILI in Pipeline Integrity Management 515</p> <p>References 535</p> <p>Bibliography: Journals, Conferences and Other Sources with ILI Related Content 535</p> <p><b>36 Eddy Current Testing in Pipeline Inspection 537<br /> </b><i>Konrad Reber</i></p> <p>36.1 Standard Eddy Current Testing 537</p> <p>36.1.1 Introduction 537</p> <p>36.1.2 How Eddy Current Testing (ECT) Works 537</p> <p>References 542</p> <p><b>37 Unpiggable Pipelines 545<br /> </b><i>Tom Steinvoorte</i></p> <p>37.1 Introduction 545</p> <p>37.1.1 What Is an Unpiggable Pipeline? 545</p> <p>References 554</p> <p>Bibliography: Sources of Additional Information 555</p> <p><b>38 In-the-Ditch Pipeline Inspection 557<br /> </b><i>Greg Zinter</i></p> <p>38.1 Overview 557</p> <p>38.2 Introduction to Nondestructive Examination of Pipelines 557</p> <p>38.12 Summary 568</p> <p>Acknowledgments 568</p> <p>Reference 569</p> <p>Bibliography 569</p> <p><b>39 Ultrasonic Monitoring of Pipeline Wall Thickness with Autonomous, Wireless Sensor Networks 571<br /> </b><i>Frederic Cegla and Jon Allin</i></p> <p>39.1 Introduction 571</p> <p>39.2 The Physics of Ultrasonic Thickness Gauging 571</p> <p>39.6 Summary 576</p> <p>Acknowledgments 577</p> <p>References 577</p> <p><b>40 Flaw Assessment 579<br /> </b><i>Ted L. Anderson</i></p> <p>40.1 Overview 579</p> <p>40.1.1 Why Are Flaws Detrimental? 579</p> <p>References 586</p> <p><b>41 Integrity Management of Pipeline Facilities 587<br /> </b><i>Keith G. Leewis</i></p> <p>41.1 Overview 587</p> <p>41.2 Outline 588</p> <p>41.3 Scoping a Facilities Integrity Plan 588</p> <p><b>Part VI Maintenance, Repair, Replacement, And Abandonment<br /> <br /> 42 Pipeline Cleaning 601<br /> </b><i>Randy L. Roberts</i></p> <p>42.1 Introduction 601</p> <p>42.2 Contaminates 601</p> <p>42.3 Progressive Pigging 602</p> <p>42.10 Summary 607</p> <p>References 607</p> <p><b>43 Managing an Aging Pipeline Infrastructure 609<br /> </b><i>Brian N. Leis</i></p> <p>43.1 Introduction 609</p> <p>43.2 Background 609</p> <p>Acknowledgments 633</p> <p>References 633</p> <p><b>44 Pipeline Repair Using Full-Encirclement Repair Sleeves 635<br /> </b><i>William A. Bruce and John Kiefner</i></p> <p>44.1 Introduction 635</p> <p>44.2 Background 635</p> <p>44.3 Full-Encirclement Steel Sleeves 636</p> <p>44.6 Summary and Conclusions 654</p> <p>References 654</p> <p><b>45 Pipeline Repair 657<br /> </b><i>Robert Smyth and Buddy Powers</i></p> <p>45.1 Introduction 657</p> <p>45.2 Background 657</p> <p>45.3 Safety 657</p> <p>References 664</p> <p><b>46 Pipeline Oil Spill Cleanup 665<br /> </b><i>Merv Fingas</i></p> <p>46.1 Oil Spills and Pipelines: An Overview 665</p> <p>46.1.1 How Often Do Spills Occur? 665</p> <p>46.1.2 Pipelines 666</p> <p>References 687</p> <p><b>47 Pipeline Abandonment 689<br /> </b><i>Alan Pentney and Dean Carnes</i></p> <p>47.1 What Is Pipeline Abandonment? 689</p> <p>47.2 Abandonment Planning 689</p> <p>References 696</p> <p><b>Part VII Risk Management<br /> <br /> 48 Risk Management of Pipelines 699<br /> </b><i>Lynne C. Kaley and Kathleen O. Powers</i></p> <p>48.1 Overview 699</p> <p>48.1.1 Risk-Based Inspection for Pipelines 699</p> <p>48.1.2 Scope 700</p> <p>48.1.3 Risk Analysis 700</p> <p>48.1.4 The RBI Approach 702</p> <p>48.1.5 Risk Reduction and Inspection Planning 703</p> <p>48.5.1 Summary 724</p> <p>48.5.2 Ten Criteria for Selecting the Most Appropriate Level of RBI 724</p> <p>48.5.3 Justifying Costs 725</p> <p>References 726</p> <p><b>49 Offshore Pipeline Risk, Corrosion, and Integrity Management 727<br /> </b><i>Binder Singh and Ben Poblete</i></p> <p>49.1 Introduction 727</p> <p>49.2 Challenges, Lessons, and Solutions 728</p> <p>49.3 Life Cycle 733</p> <p>49.7 Summary: Recommendations and Future Strategies 755</p> <p>Acknowledgments 755</p> <p>References 755</p> <p>Bibliography 756</p> <p><b>Part VIII Case Histories <br /> <br /> 50 Buckling of Pipelines under Repair Sleeves: A Case Study— Analysis of the Problem and Cost-Effective Solutions 761<br /> </b><i>Arnold L. Lewis ii</i></p> <p>50.1 Introduction 761</p> <p>50.1.1 Statement of the Buckle/Collapse Problem 762</p> <p>50.1.2 Observations 762</p> <p>50.3 Summary 767</p> <p>Acknowledgment 767</p> <p>References 767</p> <p><b>51 In-Line Inspection on an Unprecedented Scale 769<br /> </b><i>Stephan Brockhaus, Hubert Lindner, Tom Steinvoorte, Holger Hennerkes, and Ljiljana Djapic-Oosterkamp</i></p> <p>51.1 Introduction 769</p> <p>51.2 Challenging Design and Operating Conditions 769</p> <p>51.3 Combined Technologies for Reliable Inspection Results 769</p> <p>51.7 Summary 775</p> <p>References 775</p> <p><b>52 Deepwater, High-Pressure and Multidiameter Pipelines—A Challenging In-Line Inspection Project 777<br /> </b><i>Hubert Lindner</i></p> <p>52.1 Introduction 777</p> <p>52.2 Project Requirements 777</p> <p>52.7 Summary 783</p> <p>References 783</p> <p>Glossary</p> <p>Part 1: Abbreviations 785</p> <p>Part 2: Selected Terms 791</p> <p>Index 793</p>
<b>R. Winston Revie</b> retired from the CANMET Materials Technology Laboratory, Ottawa, Canada, in 2011, after 33 years as a scientist, project leader, and program manager for pipeline technology. He is a Past President of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum, a Past President of the NACE Foundation of Canada, and a Past Director of NACE International. He received the Distinguished Technical Achievement Award of NACE International in 2004 and has received Fellow honors from CIM (1999), NACE International (1999), ASM International (2003), and The Electrochemical Society (2012) among other awards for his work. He has authored or co-authored more than 100 reference papers and technical reports and was the editor of <i>Uhlig's Corrosion Handbook</i>, 2<sup>nd</sup> and 3<sup>rd</sup> editions (Wiley, 2000 and 2011), and he co-authored the 3<sup>rd</sup> and 4th editions of <i>Corrosion and Corrosion Control</i> (Wiley, 1985 and 2008).
<p><b>A comprehensive and detailed reference guide on the integrity and safety of oil and gas pipelines</b><br /><br />Oil and gas pipeline transport is used to supply energy to power our industries, fuel our cars, and heat and cool our homes. While an extensive pipeline network is an efficient and safe method of transporting petroleum and other products, several hazards and incidents, such as gas leaks and oil spills, have raised environmental and social concerns.<br /><br /><i>Oil and Gas Pipelines: Integrity and Safety Handbook</i> discusses the factors that affect the integrity of new and aging pipelines, public safety, and environmental protection. It covers the reliability of pipelines as affected by factors throughout the pipeline lifetime, ranging from design, manufacture, and welding to operation, inspection, monitoring, maintenance, and repair.<br /><br />Through contributions from leading experts in diverse fields, <i>Oil and Gas Pipelines: Integrity and Safety Handbook</i> features:</p> <ul> <li>52 peer-reviewed chapters on the integrity and safety of production and transmission pipelines, onshore and offshore</li> </ul> <ul> <li>Chapters on both stress-based and strain-based design, the latter being a novel type of design that has only recently been investigated by designer firms and regulators</li> <li>Detailed discussion of many critical issues, including mechanical damage, residual stresses, erosion-corrosion, pitting corrosion, microbiologically influenced corrosion, telluric effects, direct assessment, human factors, flaw assessment, integrity management of pipeline facilities, pipeline cleaning, black powder, oil spill cleanup, repair, abandonment, and risk management</li> <li>Links between modern and vintage practices to help integrity engineers better understand their system and apply up-to-date technology to older infrastructure</li> </ul> <p>Additional chapters examine in-line inspection, in-the-ditch inspection, and internal corrosion monitoring. The book closes with several case histories with practical examples of solutions to complex problems related to pipeline integrity.</p> <p>The evolution of the pipeline industry has experienced many recent developments as a result of engineering advances, new standards and regulations, and environmental requirements. The breadth and depth of coverage of this Handbook make this new book a valuable source of information for all those concerned with pipeline technology.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €