Details

Nuclear Magnetic Resonance Spectroscopy


Nuclear Magnetic Resonance Spectroscopy

An Introduction to Principles, Applications, and Experimental Methods
2. Aufl.

von: Joseph B. Lambert, Eugene P. Mazzola, Clark D. Ridge

66,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.10.2018
ISBN/EAN: 9781119295280
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples</b></p> <p>Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more.</p> <p><i>Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition</i> begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation.</p> <ul> <li>Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods</li> <li>Contains experimental procedures and practical advice relative to the execution of NMR experiments</li> <li>Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods</li> <li>Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams</li> </ul> <p>By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists,<i> Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition</i> is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.</p>
<p>Preface to First Edition</p> <p>Preface to Second Edition</p> <p>Symbols</p> <p>Abbreviations</p> <p><b>1. Introduction</b></p> <p>1.1. Magnetic Properties of Nuclei</p> <p>1.2. The Chemical Shift</p> <p>1.3. Excitation and Relaxation</p> <p>1.4. Pulsed Experiments</p> <p>1.5. The Coupling Constant</p> <p>1.6. Quantitation and Complex Splitting</p> <p>1.7. Commonly Studied Nuclides</p> <p>1.8. Dynamic Effects</p> <p>1.9. Spectra of Solids</p> <p>Problems</p> <p>Tips on Solving NMR Problems</p> <p>Bibliography</p> <p><b>2. Introductory Experimental Methods</b></p> <p>2.1. The Spectrometer</p> <p>2.2. Sample Preparation</p> <p>2.3. Optimizing the Signal</p> <p>2.3a. Sample Tube Placement</p> <p>2.3b. Probe Tuning</p> <p>2.3c. Field/Frequency Locking</p> <p>2.3d. Spectrometer Shimming</p> <p>2.4. Determination of NMR Spectra-Acquisition Parameters</p> <p>2.4a. Number of Data Points</p> <p>2.4b. Spectral Width</p> <p>2.4c. Filter Bandwidth</p> <p>2.4d. Acquisition Time</p> <p>2.4e. Transmitter Offset</p> <p>2.4f. Flip Angle</p> <p>2.4g. Receiver Gain</p> <p>2.4h. Number of Scans</p> <p>2.4i. Steady-State Scans</p> <p>2.4j. Oversampling and Digital Filtration</p> <p>2.4k. Decoupling for X Nuclei</p> <p>2.4l. Typical NMR Experiments</p> <p>2.5. Determination of NMR Spectral-Processing Parameters</p> <p>2.5a. Exponential Weighting</p> <p>2.5b. Zero Filling</p> <p>2.5c. FID Truncation and Spectral Artifacts</p> <p>2.5d. Resolution</p> <p>2.6. Determination of NMR Spectra:  Spectral Presentation</p> <p>2.6a. Signal Phasing and Baseline Correction</p> <p>2.6b. Zero Referencing</p> <p>2.6c. Determination of Certain NMR Parameters</p> <p>2.7. Calibrations</p> <p>2.7a. Pulse Width (Flip Angle)</p> <p>2.8b. Decoupler Field Strength</p> <p>Problems</p> <p>Bibliography</p> <p><b>3. The Chemical Shift</b></p> <p>3.1. Factors That Influence Proton Shifts</p> <p>3.2. Proton Chemical Shifts and Structure</p> <p>3.2a. Saturated Aliphatics</p> <p>3.2b. Unsaturated Aliphatics</p> <p>3.2c. Aromatics</p> <p>3.2d. Protons on Oxygen and Nitrogen</p> <p>3.2e. Programs for Empirical Calculations</p> <p>3.3. Medium and Isotope Effects</p> <p>3.4. Factors That Influence Carbon Shifts</p> <p>3.5. Carbon Chemical Shifts and Structure</p> <p>3.5a. Saturated Aliphatics</p> <p>3.5b. Unsaturated Compounds</p> <p>3.5c. Carbonyl Groups</p> <p>3.5d. Programs for Empirical Calculation</p> <p>3.6. Tables of Chemical Shifts</p> <p>Problems</p> <p>Further Tips on Solving NMR Problems</p> <p>Bibliography</p> <p><b>4. The Coupling Constant</b></p> <p>4.1. First- and Second-Order Effects</p> <p>4.2. Chemical and Magnetic Equivalence</p> <p>4.3. Signs and Mechanisms of Coupling</p> <p>4.4. Couplings over One Bond</p> <p>4.5. Geminal Couplings</p> <p>4.6. Vicinal Couplings</p> <p>4.7. Long-Range Couplings</p> <p>4.8. Spectral Analysis</p> <p>4.9. Tables of Coupling Constants</p> <p>Problems</p> <p>Bibliography</p> <p><b>5. Further Topics in One-Dimensional NMR Spectroscopy</b></p> <p>5.1. Spin-Lattice and Spin-Spin Relaxation</p> <p>5.2. Reactions on the NMR Time Scale</p> <p>5.3. Multiple Resonance</p> <p>5.4. The Nuclear Overhauser Effect</p> <p>5.5. Spectral Editing</p> <p>5.6. Sensitivity Enhancement</p> <p>5.7. Carbon Connectivity</p> <p>5.8. Phase Cycling, Composite Pulses, and Shaped Pulses</p> <p>Problems</p> <p>Bibliography</p> <p><b>6. Two-Dimensional NMR Spectroscopy</b></p> <p>6.1. Proton-Proton Correlation Through <i>J</i> Coupling</p> <p>6.2. Proton-Heteronucleus Correlation</p> <p>6.3. Proton-Proton Correlation Through Space or Chemical Exchange</p> <p>6.4. Carbon-Carbon Correlation</p> <p>6.5. Higher Dimensions</p> <p>6.6. Pulsed Field Gradients</p> <p>6.7. Diffusion-Ordered Spectroscopy</p> <p>6.7. Summary of Two-Dimensional Methods</p> <p>Problems</p> <p>Bibliography</p> <p><b>7. Advanced Experimental Methods</b></p> <p>Part A. One-Dimensional Techniques</p> <p>7.1. <i>T</i><sub>1</sub> Measurements</p> <p>7.2. <sup>13</sup>C Spectral Editing Experiments</p> <p>7.2a. The APT Experiment</p> <p>7.2b. The DEPT Experiment</p> <p>7.3. NOE Experiments</p> <p>7.3a. The NOE Difference Experiment</p> <p>7.3b. The Double-Pulse, Field-Gradient, Spin-Echo NOE Experiment</p> <p>Part B. Two-Dimensional Techniques</p> <p>7.4. Two-Dimensional NMR Data-Acquisition Parameters</p> <p>7.4a. Number of Data Points</p> <p>7.4b. Number of Time Increments</p> <p>7.4c. Spectral Widths</p> <p>7.4d. Acquisition Time</p> <p>7.4e. Transmitter Offset</p> <p>7.4f. Flip Angle</p> <p>7.4g. Relaxation Delay</p> <p>7.4h. Receiver Gain</p> <p>7.4i. Number of Scans per Time Increment</p> <p>7.4j. Steady-State Scans</p> <p>7.5. Two-Dimensional NMR Data-Processing Parameters</p> <p>7.5a. Weighting Functions</p> <p>7.5b. Zero Filling</p> <p>7.5c. Digital Resolution</p> <p>7.5d. Linear Prediction</p> <p>7.6. Two-Dimensional NMR Data Display</p> <p>7.6a. Phasing and Zero Referencing</p> <p>7.6b. Symmetrization</p> <p>7.6c. Use of Cross Sections in Analysis</p> <p>Part C. Two-Dimensional Techniques:  The Experiments</p> <p>7.7. Homonuclear Chemical-Shift Correlation Experiments via Scalar Coupling</p> <p>7.7a. The COSY Family:  COSY-90°, COSY-45°, Long-Range COSY, and DQF-COSY</p> <p>7.7b. The TOCSY Experiment</p> <p>7.8. Direct Heteronuclear Chemical-Shift Correlation via Scalar Coupling</p> <p>7.8a. The HMQC Experiment</p> <p>7.8b. The HSQC Experiment</p> <p>7.8c. The HETCOR Experiment</p> <p>7.9. Indirect Heteronuclear Chemical-Shift Correlation via Scalar Coupling</p> <p>7.9a. The HMBC Experiment</p> <p>7.9b. The FLOCK Experiment</p> <p>7.9c. The HSQC-TOCSY Experiment</p> <p>7.10. Homonuclear Chemical-Shift Correlation via Dipolar Coupling</p> <p>7.10a. The NOESY Experiment</p> <p>7.10b. The ROESY Experiment</p> <p>7.11. 1D and Advanced 2D Experiments</p> <p>7.11a. The 1D TOCSY Experiment</p> <p>7.11b. The 1D NOESY and ROESY Experiments</p> <p>7.11c. The Multiplicity-Edited HSQC Experiment</p> <p>7.11d. The H2BC Experiment</p> <p>7.11e. Nonuniform Sampling</p> <p>7.11f. Pure Shift NMR</p> <p>7.11g. Covariance NMR</p> <p>7.12. Pure Shift-Covariance NMR</p> <p>Bibliography</p> <p><b>8. Structural Elucidation:  An Example</b></p> <p>Part A. Spectral Analysis</p> <p>8.1. <sup>1</sup>H NMR Data</p> <p>8.2. <sup>13</sup>C NMR Data</p> <p>8.3. The DEPT Experiment</p> <p>8.4. The HSQC Experiment</p> <p>8.5. The COSY Experiment</p> <p>8.6. The HMBC Experiment</p> <p>8.7. General Molecular Assembly Strategy</p> <p>8.8. A Specific Molecular Assembly Procedure</p> <p>8.9. The NOESY Experiment</p> <p>Part B Computer-Assisted Structure Elucidation</p> <p>8.10. CASE Procedures</p> <p>8.11. T-2 Toxin</p> <p>Appendix 1 Derivation of the NMR Equation</p> <p>Appendix 2 The Bloch Equations</p> <p>Appendix 3 Quantum Mechanical Treatment of the Two-Spin System</p> <p>Appendix 4 Analysis of Second-Order, Three- and Four-Spin Systems by Inspection</p> <p>Appendix 5 Relaxation</p> <p>Appendix 6 Product-Operator Formalism and Coherence-Level Diagrams</p> <p>Bibliography</p> <p>Appendix 7 Stereochemical Considerations</p> <p>A7.1. Homotopic Groups</p> <p>A7.2. Enantiotopic Groups</p> <p>A7.3. Diastereotopic Groups</p> <p>Bibliography</p> <p>Index</p>
<p><b>Joseph B. Lambert, Ph.D.,</b> is Research Professor of Chemistry at Trinity University.</p> <p><b>Eugene P. Mazzola, Ph.D.,</b> is an adjunct professor of chemistry at the University of Maryland as well as a researcher at the UMD‐FDA Joint Institute for Food Safety and Applied Nutrition.</p> <p><b>Clark D. Ridge, Ph.D.,</b> is an NMR spectroscopist based at the Health and Human Sciences division of the FDA at College Park, Maryland.</p>
<p><b>Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples</b></p> <p>Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more.</p> <p><i>Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition</i> begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation.</p> <ul> <li>Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods</li> <li>Contains experimental procedures and practical advice relative to the execution of NMR experiments</li> <li>Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods</li> <li>Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams</li> </ul> <p>By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists,<i> Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition</i> is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.</p>

Diese Produkte könnten Sie auch interessieren:

Photochemistry and Photophysics
Photochemistry and Photophysics
von: Vincenzo Balzani, Paola Ceroni, Alberto Juris
EPUB ebook
72,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €