Details

Nonlinear Optical Cavity Dynamics


Nonlinear Optical Cavity Dynamics

From Microresonators to Fiber Lasers
1. Aufl.

von: Philippe Grelu

151,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 23.12.2015
ISBN/EAN: 9783527685813
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.
<p>List of Contributors XIII</p> <p>Foreword XXIII</p> <p><b>1 Introduction</b> <b>1</b><br /><i>Philippe Grelu</i></p> <p>References 8</p> <p><b>2 Temporal Cavity Solitons in Kerr Media 11</b><br /><i>Stéphane Coen andMiro Erkintalo</i></p> <p>2.1 Introduction 11</p> <p>2.2 Mean-Field Equation of Coherently Driven Passive Kerr Resonators 13</p> <p>2.3 Steady-State Solutions of the Mean-Field Equation 15</p> <p>2.4 Existence and Characteristics of One-Dimensional Kerr Cavity Solitons 18</p> <p>2.5 Original Experimental Observation of Temporal Kerr Cavity Solitons 21</p> <p>2.6 Interactions of Temporal CSs 25</p> <p>2.7 Breathing Temporal CSs 29</p> <p>2.8 Emission of DispersiveWaves by Temporal CSs 31</p> <p>2.9 Conclusion 34</p> <p>References 34</p> <p><b>3 Dynamics and Interaction of Laser Cavity Solitons in Broad-Area Semiconductor Lasers 41</b><br /><i>Thorsten Ackemann, Jesus Jimenez, Yoann Noblet, Neal Radwell, Guangyu Ren, Pavel V. Paulau, Craig McIntyre, Gian-Luca Oppo, Joshua P. Toomey, and Deborah M. Kane</i></p> <p>3.1 Introduction 41</p> <p>3.2 Devices and Setup 43</p> <p>3.2.1 Devices 43</p> <p>3.2.2 Experimental Setup 44</p> <p>3.3 Basic Observations and Dispersive Optical Bistability 45</p> <p>3.3.1 Basic Observation of Spatial Solitons 45</p> <p>3.3.2 Interpretation as Dispersive Optical Bistability 47</p> <p>3.3.3 Comparison to Absorptive Case 49</p> <p>3.4 Modelling of LS and Theoretical Expectations in Homogenous System 50</p> <p>3.4.1 Model Equations 50</p> <p>3.4.2 Interaction of Laser Solitons in a Homogenous System 52</p> <p>3.5 Phase and Frequency Locking of Trapped Laser Cavity Solitons 54</p> <p>3.5.1 Basic Observation 54</p> <p>3.5.2 Experiments on Locking Phase 55</p> <p>3.5.3 Adler Locking: Theory 59</p> <p>3.6 Dynamics of Single Solitons 60</p> <p>3.6.1 Transient Dynamics 62</p> <p>3.6.2 Outlook on Asymptotic Dynamics 65</p> <p>3.7 Summary and Outlook 68</p> <p>Acknowledgments 70</p> <p>References 70</p> <p><b>4 Localized States in SemiconductorMicrocavities, from Transverse to Longitudinal Structures and Delayed Systems 77</b><br /><i>Stéphane Barland, Massimo Guidici, Julien Javaloyes, and Giovanna Tissoni</i></p> <p>4.1 Introduction 77</p> <p>4.2 Lasing Localized States 80</p> <p>4.2.1 Transverse Localized States in Coupled Microcavities 80</p> <p>4.2.2 Time-Localized Structures in Passive Mode-Locked Semiconductor Laser 82</p> <p>4.3 Localized States in Nonlinear Element with Delayed Retroaction 87</p> <p>4.3.1 Front Pinning in Bistable System with Delay 88</p> <p>4.3.2 Topological Dissipative Solitons in Excitable System with Delay 92</p> <p>4.4 Conclusion and Outlook 98</p> <p>Acknowledgements 99</p> <p>References 99</p> <p><b>5 Dynamics of Dissipative Solitons in Presence of Inhomogeneities and Drift 107</b><br /><i>Pedro Parra-Rivas, Damià Gomila, Lendert Gelens, Manuel A. Matías, and Pere Colet</i></p> <p>5.1 Introduction 107</p> <p>5.2 General Theory: Swift–Hohenberg Equation with Inhomogeneities and Drift 108</p> <p>5.3 Excitability Regimes 113</p> <p>5.4 Fiber Cavities and Microresonators:The Lugiato–Lefever model 116</p> <p>5.5 Periodically Pumped Ring Cavities 119</p> <p>5.6 Effects of Drift in a Periodically Pumped Ring Cavity 120</p> <p>5.7 Summary 125</p> <p>Acknowledgments 125</p> <p>References 125</p> <p><b>6 Dissipative Kerr Solitons in Optical Microresonators 129</b><br /><i>Tobias Herr, Michael L. Gorodetsky, and Tobias J. Kippenberg</i></p> <p>6.1 Introduction to Optical Microresonator Kerr-Frequency Combs 129</p> <p>6.2 Resonator Platforms 131</p> <p>6.2.1 Ultra High-Q (MgF2) Crystalline Microresonators 131</p> <p>6.2.2 Integrated Photonic Chip Microring Resonators 132</p> <p>6.3 Physics of the Kerr-comb Formation Process 132</p> <p>6.3.1 Nonlinear Coupled Mode Equations 135</p> <p>6.3.2 Degenerate Hyperparametric Oscillations 138</p> <p>6.3.3 Primary Sidebands 140</p> <p>6.4 Dissipative Kerr Solitons in Optical Microresonators 141</p> <p>6.4.1 AnalyticalTheory of Dissipative Kerr Solitons 141</p> <p>6.5 Signatures of Dissipative Kerr Soliton Formation in Crystalline Resonators 145</p> <p>6.6 Laser Tuning into the Dissipative Kerr Soliton States 147</p> <p>6.7 Simulating Soliton Formation in Microresonators 148</p> <p>6.8 Characterization of Temporal Dissipative Solitons in Crystalline Microresonators 149</p> <p>6.9 Resonator Mode Structure and Soliton Formation 151</p> <p>6.10 Using Dissipative Kerr solitons to Count the Cycles of Light 152</p> <p>6.11 Temporal Solitons and Soliton-Induced Cherenkov Radiation in an Si3N4 Photonic Chip 155</p> <p>6.12 Summary 157</p> <p>References 158</p> <p><b>7 Dynamical Regimes in Kerr Optical Frequency Combs: Theory and Experiments 163</b><br /><i>Aurélien Coillet, Nan Yu, Curtis R. Menyuk, and Yanne K. Chembo</i></p> <p>7.1 Introduction 163</p> <p>7.2 The System 164</p> <p>7.3 The Models 166</p> <p>7.3.1 Modal Expansion Model 166</p> <p>7.3.2 Spatiotemporal Model 167</p> <p>7.3.3 Stability Analysis 168</p> <p>7.4 Dynamical States 171</p> <p>7.4.1 Primary Combs 171</p> <p>7.4.2 Solitons 176</p> <p>7.4.3 Chaos 179</p> <p>7.5 Conclusion 183</p> <p>7.6 Acknowledgments 184</p> <p>References 184</p> <p><b>8 Nonlinear Effects in Microfibers and Microcoil Resonators 189</b><br /><i>Muhammad I.M. Abdul Khudus, Rand Ismaeel, Gilberto Brambilla, Neil G. R. Broderick, and Timothy Lee</i></p> <p>8.1 Introduction 189</p> <p>8.2 Linear Optical Properties of Optical Microfibers 191</p> <p>8.3 Linear Properties of Optical Microcoil Resonators 193</p> <p>8.4 Bistability in Nonlinear Optical Microcoil Resonators 195</p> <p>8.4.1 Broken Microcoil Resonators 197</p> <p>8.4.2 Polarization Effects in Nonlinear Optical Microcoil Resonators 198</p> <p>8.4.3 Possible Experimental Verification 199</p> <p>8.5 Harmonic Generation in Optical Microfibers and Microloop Resonators 200</p> <p>8.5.1 Mathematical Modeling and Efficiency ofThird Harmonic Generation 201</p> <p>8.5.2 Third Harmonic Generation in Microloop Resonators 204</p> <p>8.5.3 Second-Harmonic Generation 208</p> <p>8.6 Conclusions and Outlook 209</p> <p>References 209</p> <p><b>9 Harmonic Laser Mode-Locking Based on Nonlinear Microresonators 213</b><br /><i>Alessia Pasquazi, Marco Peccianti, David J. Moss, Sai Tac Chu, Brent E. Little, and Roberto Morandotti</i></p> <p>9.1 Introduction 213</p> <p>9.2 Modeling 215</p> <p>9.3 Experiments 219</p> <p>9.3.1 Short Cavity, Unstable Laser Oscillation 223</p> <p>9.3.2 Short Cavity, Stable Laser Oscillation 224</p> <p>9.3.3 Short Cavity, Dual-Line Laser Oscillation 226</p> <p>9.4 Conclusions 228</p> <p>References 229</p> <p><b>10 Collective Dissipative Soliton Dynamics in Passively Mode-Locked Fiber Lasers 231</b><br /><i>François Sanchez, Andrey Komarov, Philippe Grelu, Mohamed Salhi, Konstantin Komarov, and Hervé Leblond</i></p> <p>10.1 Introduction 231</p> <p>10.1.1 Dissipative Solitons and Mode-Locked Lasers 231</p> <p>10.1.2 Multiple Pulses and Their Interactions 232</p> <p>10.2 Multistability and Hysteresis Phenomena 234</p> <p>10.2.1 Multiple Pulsing 234</p> <p>10.2.2 Multistability Observations 235</p> <p>10.2.3 Modeling Multiple Pulsing and Hysteresis 236</p> <p>10.3 Soliton Crystals 238</p> <p>10.3.1 From Soliton Molecules to Soliton Crystals 238</p> <p>10.3.2 Soliton Crystal Experiments 239</p> <p>10.3.3 Modeling Soliton Crystal Formations 240</p> <p>10.3.4 Soliton Crystal Instability 243</p> <p>10.4 Toward the Control of Harmonic Mode-Locking by Optical Injection 244</p> <p>10.5 Complex Soliton Dynamics 247</p> <p>10.5.1 Unfolding Complexity 247</p> <p>10.5.2 Analogy Between Soliton Patterns and the States of Matter 247</p> <p>10.5.3 Soliton Rain Dynamics 250</p> <p>10.5.4 Chaotic Pulse Bunches 252</p> <p>10.6 Summary 256</p> <p>Acknowledgments 257</p> <p>References 257</p> <p><b>11 Exploding Solitons and RogueWaves in Optical Cavities 263</b><br /><i>Wonkeun Chang and Nail Akhmediev</i></p> <p>11.1 Introduction 263</p> <p>11.2 Passively Mode-Locked Laser Model 266</p> <p>11.3 The Results of Numerical Simulations 268</p> <p>11.4 Probability Density Function 270</p> <p>11.5 Conclusions 272</p> <p>11.6 Acknowledgements 272</p> <p>References 273</p> <p><b>12 SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers 277</b><br /><i>Sergey A. Babin, Evgeniy V. Podivilov, Denis S. Kharenko, Anastasia E. Bednyakova, Mikhail P. Fedoruk, Olga V. Shtyrina, Vladimir L. Kalashnikov, and Alexander A. Apolonski</i></p> <p>12.1 Introduction 277</p> <p>12.2 Generation of Highly Chirped Dissipative Solitons in Fiber Laser Cavity 279</p> <p>12.2.1 Modeling 279</p> <p>12.2.1.1 Analytical Solution of CQGLE in the High Chirp Limit 281</p> <p>12.2.1.2 Comparison of Analytics with Numerics 284</p> <p>12.2.2 Experiment and its Comparison with Simulation 286</p> <p>12.2.3 NPE Overdriving and its Influence on Dissipative Solitons 288</p> <p>12.3 Scaling of Dissipative Solitons in All-Fiber Configuration 290</p> <p>12.3.1 DifferentWays to Increase Pulse Energy, Limiting Factors 290</p> <p>12.3.2 SRS Threshold for Dissipative Solitons at Cavity Lengthening 292</p> <p>12.4 SRS-Driven Evolution of Dissipative Solitons in Fiber Laser Cavity 297</p> <p>12.4.1 NSE-Based Model in Presence of SRS 297</p> <p>12.4.1.1 Model Details 298</p> <p>12.4.1.2 Simulation, Comparison with Experiment 299</p> <p>12.4.2 Generation of Stokes-Shifted Raman Dissipative Solitons 302</p> <p>12.4.2.1 Proof-of-Principle Experiment 304</p> <p>12.4.3 Characteristics of Raman dissipative Solitons 306</p> <p>12.4.3.1 Variation of the Soliton Spectra with Filter Parameters 306</p> <p>12.4.3.2 Variation of the Soliton Spectra with the Raman Feedback Parameters 307</p> <p>12.4.4 Generation of Multicolor Soliton Complexes and Their Characteristics 307</p> <p>12.5 Conclusions and Future Developments 310</p> <p>References 312</p> <p><b>13 Synchronization in Vectorial Solid-State Lasers 317</b><br /><i>Marc Brunel, Marco Romanelli, and Marc Vallet</i></p> <p>13.1 Introduction 317</p> <p>13.2 Self-Locking in Dual-Polarization Lasers 318</p> <p>13.2.1 Vectorial Description of the Cavity 318</p> <p>13.2.2 Self-Pulsing in Lasers with Crossed Loss and Phase Anisotropies 319</p> <p>13.2.3 Polarization Self-Modulated Lasers 321</p> <p>13.2.4 Mode-Locked Dual-Polarization Lasers 323</p> <p>13.2.4.1 Phase Locking at c/4L 325</p> <p>13.3 Dynamics of Solid-State Lasers Submitted to a Frequency-Shifted Feedback 327</p> <p>13.3.1 Description of the System 327</p> <p>13.3.1.1 Experimental Setup 328</p> <p>13.3.2 Lang–Kobayashi Rate Equations 330</p> <p>13.3.2.1 Phase Dynamics 331</p> <p>13.3.2.2 Time-Scaled Rate Equations 331</p> <p>13.3.3 Phase Locking 332</p> <p>13.3.3.1 Continuous-Wave Case 332</p> <p>13.3.3.2 Passive Q-Switching Case 333</p> <p>13.3.4 Bounded Phase Dynamics 334</p> <p>13.3.4.1 Intensity Bifurcation Diagram 334</p> <p>13.3.4.2 Phase Bifurcation Diagram 336</p> <p>13.3.4.3 Phasors 337</p> <p>13.3.4.4 Role of the Coupling in the Active Medium 338</p> <p>13.3.5 Measure of the Synchronization in the Bounded Phase Regime 339</p> <p>13.4 Conclusion 341</p> <p>Acknowledgments 341</p> <p>References 341</p> <p><b>14 Vector Patterns and Dynamics in Fiber Laser Cavities 347</b><br /><i>StefanWabnitz, Caroline Lecaplain, and Philippe Grelu</i></p> <p>14.1 Introduction 347</p> <p>14.1.1 Pulsed Vector Dynamics with a Saturable Absorber 347</p> <p>14.1.2 Vector DynamicsWithout a Saturable Absorber 348</p> <p>14.2 Fiber Laser Models 349</p> <p>14.2.1 The Scalar Cubic Ginzburg–Landau Equation 350</p> <p>14.2.2 Vector Ginzburg–Landau Equations 352</p> <p>14.2.3 Vector Nonlinear Schrödinger Equation 355</p> <p>14.2.4 Numerical Simulations 357</p> <p>14.3 Experiments of Vector Dynamics 357</p> <p>14.3.1 The Anomalous GVD: From Chaos to Antiphase Dissipative Dynamics 359</p> <p>14.3.2 The Normal GVD: Polarization-DomainWalls 362</p> <p>14.4 Summary 364</p> <p>Acknowledgments 364</p> <p>References 364</p> <p><b>15 Cavity Polariton Solitons 369</b><br /><i>Oleg A. Egorov and Falk Lederer</i></p> <p>15.1 Introduction 369</p> <p>15.2 Mathematical Model 371</p> <p>15.3 One-Dimensional Bright Cavity Polariton Solitons 373</p> <p>15.3.1 Amplitude Equation in the Polaritonic Basis 374</p> <p>15.3.2 CPSs Beyond the “Magic Angle” and Their Stability 376</p> <p>15.3.3 Multi-Hump Cavity Polariton Solitons 378</p> <p>15.4 Two-Dimensional Parametric Polariton Solitons 380</p> <p>15.4.1 Amplitude Equations for the ParticipatingWaves 380</p> <p>15.4.2 Families of Parametric Polariton Solitons 382</p> <p>15.4.3 Excitation and Dynamics of PPSs 385</p> <p>15.5 Two-Dimensional Moving Bright CPSs 387</p> <p>15.6 Summary 389</p> <p>Acknowledgments 389</p> <p>References 390</p> <p><b>16 Data Methods and Computational Tools for Characterizing Complex Cavity Dynamics 395</b><br /><i>J. Nathan Kutz, Steven L. Brunton, and Xing Fu</i></p> <p>16.1 Introduction 395</p> <p>16.2 Data Methods 396</p> <p>16.2.1 Dimensionality-Reduction: Principal Components Analysis 397</p> <p>16.2.2 Search Algorithms and Library Building 398</p> <p>16.2.3 Sparse Measurements and Compressive Sensing 400</p> <p>16.2.4 Sparse Representation and Classification 401</p> <p>16.3 Adaptive, Equation-Free Control Architecture 402</p> <p>16.4 Prototypical Example: Self-Tuning Mode-Locked Fiber Lasers 403</p> <p>16.4.1 Governing Equations 404</p> <p>16.4.2 Jones Matrices forWaveplates and Polarizers 404</p> <p>16.4.3 Performance Monitoring and Objective Function 405</p> <p>16.4.4 Sparse Representation for Birefringence Classification 405</p> <p>16.4.5 Self-Tuning Laser 406</p> <p>16.5 Broader Applications of Self-Tuning Complex Systems 409</p> <p>16.5.1 Phased Array Antennas 409</p> <p>16.5.2 Coherent Laser Beam Combining 411</p> <p>16.5.3 Neuronal Stimulation 412</p> <p>16.6 Conclusions and Technological Outlook 413</p> <p>Acknowledgments 415</p> <p>References 415</p> <p><b>17 Conclusion and Outlook 419</b><br /><i>Philippe Grelu</i></p> <p>References 421</p> <p>Index 423</p>
<b>Philippe Grelu</b> has been Professor of Physics at Université de Bourgogne, in Dijon, France, since 2005. After receiving his PhD at University of Orsay (Paris XI) in quantum optics (1996), his interest moved to ultrafast nonlinear optics and mode-locked fiber lasers. His research includes spatio-temporal soliton dynamics and nonlinear microfiber optics. He developed a key expertise in nonlinear optical cavity dynamics, with major contributions in the fast developing field of dissipative solitons. He has delivered numerous invited talks at international conferences and has authored over 150 scientific publications.

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €