Details

Nickel Catalysis in Organic Synthesis


Nickel Catalysis in Organic Synthesis

Methods and Reactions
1. Aufl.

von: Sensuke Ogoshi

124,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.11.2019
ISBN/EAN: 9783527813797
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive reference to nickel chemistry for every scientist working with organometallic catalysts <br> <br> Written by one of the world?s leading reseachers in the field, Nickel Catalysis in Organic Synthesis presents a comprehensive review of the high potential of modern nickel catalysis and its application in synthesis. Structured in a clear and assessible manner, the book offers a collection of various reaction types, such as cross-coupling reactions, reactions for the activation of unreactive bonds, carbon dioxide fixation, and many more. <br> <br> Nickel has been recognized as one of the most interesting transition metals for homogeneous catalysis. This book offers an overview to the recently developed new ligands, new reaction conditions, and new apparatus to control the reactivity of nickel catalysts, allowing scientists to apply nickel catalysts to a variety of bond-forming reactions. A must-read for anyone working with organometallic compounds and their application in organic synthesis, this important guide: <br> <br> -Reviews the numerous applications of nickel catalysis in synthesis <br> -Explores the use of nickel as a relatively cheap and earth-abundant metal <br> -Examines the versatility of nickel catalysis in reactions like cross-coupling reactions and CH activations <br> -Offers a resource for academics and industry professionals <br> <br> Written for catalytic chemists, organic chemists, inorganic chemists, structural chemists, and chemists in industry, Nickel Catalysis in Organic Synthesis provides a much-needed overview of the most recent developments in modern nickel catalysis and its application in synthesis. <br>
<p>Preface xi</p> <p><b>Part I Reactions via Nickelacycles </b><b>1</b></p> <p><b>1 Formation of Nickelacycles and Reaction with Carbon Monoxide </b><b>3<br /></b><i>Sensuke Ogoshi</i></p> <p>1.1 Introduction 3</p> <p>1.2 Formation of Hetero-nickelacycles from Nickel(0) 3</p> <p>1.3 Stoichiometric Reaction of Hetero-nickelacycles with Carbon Monoxide 4</p> <p>References 9</p> <p><b>2 Transformation of Aldehydes via Nickelacycles </b><b>13<br /></b><i>Yoichi Hoshimoto</i></p> <p>2.1 Introduction and Scope ofThis Chapter 13</p> <p>2.2 Catalytic Transformation of Aldehydes Through Three-Membered Oxanickelacycle Complexes 14</p> <p>2.3 Catalytic Transformation of Aldehydes Through Five-Membered Oxanickelacycle Complexes 18</p> <p>2.4 Catalytic Transformation of Aldehydes Through Seven-Membered Oxanickelacycle Complexes 22</p> <p>2.5 Conclusion and Outlook 23</p> <p>References 25</p> <p><b>3 Transformation of Imines via Nickelacycles </b><b>29<br /></b><i>Masato Ohashi</i></p> <p>3.1 Introduction 29</p> <p>3.2 [2+2+1] Carbonylative Cycloaddition of an Imine and Either an Alkyne or an Alkene Leading to γ-Lactams 29</p> <p>3.3 [2+2+2] Cycloaddition Reaction of an Imine with Two Alkynes: Formation of 1,2-Dihydropyridine Derivatives 31</p> <p>3.4 Three-Component Coupling and Cyclocondensation Reactions of an Imine, an Alkyne, and Alkylmetal Reagents 34</p> <p>References 37</p> <p><b>4 Asymmetric C—C Bond Formation Reactions via Nickelacycles </b><b>39<br /></b><i>Ravindra Kumar and Sensuke Ogoshi</i></p> <p>4.1 Introduction 39</p> <p>4.2 Enantioselective Reactions Involving Nickelacycles 39</p> <p>4.2.1 Nickel-Catalyzed Asymmetric Coupling of Alkynes and Aldehydes 39</p> <p>4.2.1.1 Nickel-Catalyzed Asymmetric Reductive Coupling of Alkynes and Aldehydes 40</p> <p>4.2.1.2 Nickel-Catalyzed Asymmetric Alkylative Coupling of Alkynes and Aldehydes 43</p> <p>4.2.2 Nickel-Catalyzed Asymmetric Coupling of Alkynes and Imines 44</p> <p>4.2.3 Nickel-Catalyzed Asymmetric Coupling of 1,3-Enynes and Aldehydes 45</p> <p>4.2.4 Nickel-Catalyzed Asymmetric Coupling of 1,3-Enynes and Ketones 46</p> <p>4.2.5 Nickel-Catalyzed Asymmetric Coupling of 1,3-Dienes and Aldehydes 47</p> <p>4.2.6 Nickel-Catalyzed Asymmetric Coupling of Enones and Alkynes 50</p> <p>4.2.6.1 Nickel-Catalyzed Asymmetric Alkylative Coupling of Enones and Alkynes 50</p> <p>4.2.6.2 Nickel-Catalyzed Asymmetric Coupling of Enones and Alkynes 51</p> <p>4.2.7 Nickel-Catalyzed Asymmetric Coupling of Arylenoates and Alkynes 55</p> <p>4.2.8 Nickel-Catalyzed Asymmetric Coupling of Diynes with Ketenes 56</p> <p>4.2.9 Nickel-Catalyzed Asymmetric Coupling of Allenes, Aldehydes, and Silanes 57</p> <p>4.2.10 Nickel-Catalyzed Asymmetric Coupling of Allenes and Isocyanates 58</p> <p>4.2.11 Nickel-Catalyzed Asymmetric Coupling of Alkenes, Aldehydes, and Silanes 59</p> <p>4.2.12 Nickel-Catalyzed Asymmetric Coupling of Formamide and Alkene 61</p> <p>4.2.13 Nickel-Catalyzed Asymmetric Coupling of Alkynes and Cyclopropyl Carboxamide 63</p> <p>4.3 Miscellaneous 64</p> <p>4.3.1 Nickel-Catalyzed Asymmetric Annulation of Pyridones via Hydroarylation to Alkenes 64</p> <p>4.3.2 Nickel-Catalyzed Asymmetric Synthesis of Benzoxasilole 65</p> <p>4.4 Overview and Future Perspective 66</p> <p>References 67</p> <p><b>Part II Functionalization of Unreactive Bonds </b><b>69</b></p> <p><b>5 Recent Advances in Ni-Catalyzed Chelation-Assisted Direct Functionalization of Inert C—H Bonds </b><b>71<br /></b><i>Yan-Hua Liu, Fang Hu, and Bing-Feng Shi</i></p> <p>5.1 Introduction 71</p> <p>5.2 Ni-Catalyzed Functionalization of Inert C<b>—</b>H Bonds Assisted by Bidentate Directing Groups 71</p> <p>5.2.1 Arylation 72</p> <p>5.2.2 Alkylation 76</p> <p>5.2.3 Alkenylation 83</p> <p>5.2.4 Alkynylation 85</p> <p>5.2.5 Other C—C Bond Formation Reactions Directed by Bidentate Directing Group 88</p> <p>5.2.6 C—N Bond Formation 89</p> <p>5.2.7 C–Chalcogen (Chalcogen = O, S, Se) Bond Formation 89</p> <p>5.2.8 C–Halogen Bond Formation 92</p> <p>5.3 Ni-Catalyzed Functionalization of Inert C<b>—</b>H Bonds Assisted by Monodentate Directing Groups 94</p> <p>5.3.1 Alkylation 94</p> <p>5.3.2 Alkenylation 95</p> <p>5.3.3 Alkynylation 96</p> <p>5.3.4 C–Calcogen Bond Formation 97</p> <p>5.4 Summary 98</p> <p>References 98</p> <p><b>6 C—C Bond Functionalization </b><b>103<br /></b><i>Yoshiaki Nakao</i></p> <p>6.1 Introduction 103</p> <p>6.2 C—C Bond Functionalization of Three-Membered Rings 103</p> <p>6.3 C—C Bond Functionalization of Four- and Five-Membered Rings 110</p> <p>6.4 C—C Bond Functionalization of Less Strained Molecules 113</p> <p>6.5 C—CN Bond Functionalization 115</p> <p>6.6 Summary and Outlook 116</p> <p>References 117</p> <p><b>7 C—O Bond Transformations </b><b>123<br /></b><i>Mamoru Tobisu</i></p> <p>7.1 Introduction 123</p> <p>7.2 C(aryl)—O Bond Cleavage 124</p> <p>7.2.1 Aryl Esters, Carbamates, and Carbonates 124</p> <p>7.2.2 Aryl Ethers 132</p> <p>7.2.3 Arenols 136</p> <p>7.3 C(benzyl)—O Bond Cleavage 138</p> <p>7.3.1 Benzyl Esters and Carbamates 138</p> <p>7.3.2 Benzyl Ethers 140</p> <p>7.4 C(acyl)—O Bond Cleavage 141</p> <p>7.5 Summary and Outlook 144</p> <p>References 145</p> <p><b>Part III Coupling Reactions via Ni(I) and/or Ni(III) </b><b>151</b></p> <p><b>8 Photo-Assisted Nickel-Catalyzed Cross-Coupling Processes </b><b>153<br /></b><i>Christophe Lévêque, Cyril Ollivier, and Louis Fensterbank</i></p> <p>8.1 Introduction 153</p> <p>8.2 Development of Visible-Light Photoredox/Nickel Dual Catalysis 154</p> <p>8.2.1 For the Formation of Carbon–Carbon Bonds 154</p> <p>8.2.1.1 Starting from Organotrifluoroborates 154</p> <p>8.2.1.2 Starting from Carboxylates or Keto Acids or from Methylanilines 157</p> <p>8.2.1.3 Starting from Alkylsilicates 160</p> <p>8.2.1.4 Starting from 1,4-Dihydropyridines 166</p> <p>8.2.1.5 Starting from Alkylsulfinates 168</p> <p>8.2.1.6 Starting from Alkyl Bromides 168</p> <p>8.2.1.7 Starting from Xanthates 169</p> <p>8.2.1.8 Starting from Sp<sup>3</sup> CH Bonds 169</p> <p>8.2.2 For the Formation of Carbon–Heteroatom Bonds 170</p> <p>8.2.2.1 Formation of C—O Bond 170</p> <p>8.2.2.2 Formation of C—P Bond 171</p> <p>8.2.2.3 Formation of C—S Bond 171</p> <p>8.3 Energy-Transfer-Mediated Nickel Catalysis 173</p> <p>8.4 Conclusion 175</p> <p>References 176</p> <p><b>9 Cross-Electrophile Coupling: Principles and New Reactions </b><b>183<br /></b><i>Matthew M. Goldfogel, Liangbin Huang, and Daniel J. Weix</i></p> <p>9.1 Introduction 183</p> <p>9.2 Mechanistic Discussion of Cross-Electrophile Coupling 185</p> <p>9.3 C(sp<sup>2</sup>)—C(sp<sup>3</sup>) Bond Formation 188</p> <p>9.3.1 Cross-Electrophile Coupling of Aryl-X and Alkyl-X 188</p> <p>9.3.2 Cross-Electrophile Coupling of ArX and Bn-X 195</p> <p>9.3.3 Cross-Electrophile Coupling of ArX and Allyl-X 196</p> <p>9.3.4 Vinyl-X with R-X 197</p> <p>9.3.5 Acyl-X with Alkyl-X 199</p> <p>9.4 C(sp<sup>2</sup>)–C(sp<sup>2</sup>) Coupling 201</p> <p>9.4.1 Aryl-X/Vinyl-X+Aryl-X/Vinyl-X 201</p> <p>9.4.2 Aryl-X+Acyl-X 202</p> <p>9.5 C(sp<sup>3</sup>)–C(sp<sup>3</sup>) Coupling 203</p> <p>9.6 C(sp)–C(sp<sup>3</sup>) Coupling 205</p> <p>9.7 Multicomponent Reactions 206</p> <p>9.8 Future of the Field 208</p> <p>References 209</p> <p><b>10 Organometallic Chemistry of High-Valent Ni(III) and Ni(IV) Complexes </b><b>223<br /></b><i>Liviu M. Mirica, Sofia M. Smith, and Leonel Griego</i></p> <p>10.1 Introduction 223</p> <p>10.2 Organometallic Ni(III) Complexes 223</p> <p>10.3 Organometallic Ni(IV) Complexes 234</p> <p>10.4 Other High-Valent Ni Complexes 239</p> <p>10.4.1 Additional Ni<sup>III</sup> Complexes 239</p> <p>10.4.2 Additional Ni<sup>IV </sup>Complexes 241</p> <p>10.5 Conclusions and Outlook 243</p> <p>References 244</p> <p><b>Part IV Carbon Dioxide Fixation </b><b>249</b></p> <p><b>11 Carbon Dioxide Fixation via Nickelacycle </b><b>251<br /></b><i>Ryohei Doi and Yoshihiro Sato</i></p> <p>11.1 Introduction: Carbon Dioxide as a C1 Building Block 251</p> <p>11.2 Formation, Structure, and Reactivity of Nickelalactone 252</p> <p>11.2.1 Formation and Characterization of Nickelalactone via Oxidative Cyclization with CO<sub>2</sub> 252</p> <p>11.2.1.1 Reaction with Alkene 252</p> <p>11.2.1.2 Reaction with Allene 255</p> <p>11.2.1.3 Reaction with Diene 256</p> <p>11.2.1.4 Reaction with Alkyne 257</p> <p>11.2.1.5 Other Related Reactions 260</p> <p>11.2.1.6 Generation of Nickelalactone Without CO<sub>2</sub> 261</p> <p>11.2.2 Reactivity of Nickelalactone 261</p> <p>11.2.2.1 Transmetalation with Organometallic Reagent 261</p> <p>11.2.2.2 β-Hydride Elimination 263</p> <p>11.2.2.3 Insertion of Another Unsaturated Molecule 264</p> <p>11.2.2.4 Retro-cyclization 265</p> <p>11.2.2.5 Nucleophilic Attack 265</p> <p>11.2.2.6 Oxidation 267</p> <p>11.2.2.7 Ligand Exchange 267</p> <p>11.3 Catalytic Transformation via Nickelalactone 1: Reactions of Alkynes 268</p> <p>11.3.1 Synthesis of Pyrone 268</p> <p>11.3.1.1 Initial Finding 268</p> <p>11.3.1.2 Reaction of Diynes with CO<sub>2</sub> 268</p> <p>11.3.2 Synthesis of α,β-Unsaturated Ester 269</p> <p>11.3.2.1 Electrochemical Reactions 269</p> <p>11.3.2.2 Reduction with Organometallic Reagents 270</p> <p>11.4 Catalytic Transformation via Nickelalactone 2: Reactions of Alkenes and Related Molecules 271</p> <p>11.4.1 Transformation of Diene, Allene, and Substituted Alkene 271</p> <p>11.4.1.1 Coupling of Diene with CO<sub>2</sub> 271</p> <p>11.4.1.2 Electrochemical Process 272</p> <p>11.4.1.3 Use of Reductant 272</p> <p>11.4.2 Synthesis of Acrylic Acid from Ethylene and CO<sub>2 </sub>274</p> <p>11.4.2.1 Before the Dawn 275</p> <p>11.4.2.2 Development of Catalytic Reaction 276</p> <p>11.5 Concluding Remarks 278</p> <p>References 279</p> <p><b>12 Relevance of Ni(I) in Catalytic Carboxylation Reactions </b><b>285<br /></b><i>Rosie J. Somerville and Ruben Martin</i></p> <p>12.1 Introduction 285</p> <p>12.2 Mechanistic Building Blocks 287</p> <p>12.2.1 Additives 287</p> <p>12.2.2 Coordination of CO<sub>2</sub> 287</p> <p>12.2.3 Insertion/C—C Bond Formation 288</p> <p>12.2.4 Ligand Effects 289</p> <p>12.2.5 Oxidative Addition 290</p> <p>12.2.6 Oxidation State 290</p> <p>12.2.7 Single Electron Transfer (SET) 290</p> <p>12.2.8 Conclusion 290</p> <p>12.3 Electrocarboxylation 291</p> <p>12.3.1 Introduction 291</p> <p>12.3.2 Phosphine Ligands 294</p> <p>12.3.3 Bipyridine and Related α-Diimine Ligands 296</p> <p>12.3.4 Salen Ligands 297</p> <p>12.3.5 Conclusion 298</p> <p>12.4 Non-electrochemical Methods 298</p> <p>12.4.1 Aryl Halides 300</p> <p>12.4.2 Benzyl Electrophiles 304</p> <p>12.4.3 Carboxylation of Unactivated Alkyl Electrophiles 306</p> <p>12.4.4 Carboxylation of Allyl Electrophiles 312</p> <p>12.4.5 Unsaturated Systems 315</p> <p>12.5 Conclusions 318</p> <p>References 319</p> <p>Index 331</p>
<p><i><b>Sensuke Ogoshi</b>, PhD, is Full Professor at Osaka University. His research is directed toward the discovery of new transition metal complexes that can act as key reaction intermediates in new transformation reactions of unsaturated compounds. Recently, he has focused on catalytic transformation reactions of unsaturated compounds via nickelacycles, as well as the development of the new synthetic methods of oragano-fluorine compounds by transition-metal catalysts.</i>
<p><b>A comprehensive reference to nickel chemistry for every scientist working with organometallic catalysts</b> <p>Edited by one of the world's leading reseachers in the field, <i>Nickel Catalysis in Organic Synthesis</i> presents a comprehensive review of the high potential of modern nickel catalysis and its application in synthesis. Structured in a clear and accessible manner, the book offers a collection of various reaction types, such as cross-coupling reactions, reactions for the activation of unreactive bonds, carbon dioxide fixation, and many more. <p>Nickel has been recognized as one of the most interesting transition metals for homogeneous catalysis. This book offers an overview to the recently developed new ligands, new reaction conditions, and new apparatus to control the reactivity of nickel catalysts, allowing scientists to apply nickel catalysts to a variety of bond-forming reactions. A must-read for anyone working with organometallic compounds and their application in organic synthesis, this important guide: <ul> <li>Reviews the numerous applications of nickel catalysis in synthesis</li> <li>Explores the use of nickel as a relatively cheap and earth-abundant metal</li> <li>Examines the versatility of nickel catalysis in reactions like cross-coupling reactions and CH activations</li> <li>Offers a resource for academics and industry professionals</li> </ul> <p>Written for catalytic chemists, organic chemists, inorganic chemists, structural chemists, and chemists in industry, <i>Nickel Catalysis in Organic Synthesis</i> provides a much-needed overview of the most recent developments in modern nickel catalysis and its application in synthesis.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
40,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €