Details

Neurobiology of Motor Control


Neurobiology of Motor Control

Fundamental Concepts and New Directions
1. Aufl.

von: Scott L. Hooper, Ansgar Büschges

160,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 21.06.2017
ISBN/EAN: 9781118873625
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics</b></p> <p>The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. <i>Neurobiology of Motor Control</i> brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them.   </p> <p>The book ranges from the findings of basic scientists studying model organisms such as mollusks and <i>Drosophila</i>, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics.  </p> <ul> <li>Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings</li> <li>Offers concise summaries of motor control systems across a variety of animals and movement types</li> <li>Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods</li> <li>Considers unresolved questions and how current scientific advances may be used to solve them going forward</li> </ul> <p>Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, <i>Neurobiology of Motor Control</i> is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists. </p>
<p>List of Contributors xiii</p> <p>About the Cover xvii</p> <p><b>1 Introduction 1<br /></b><i>Ansgar Büschges and Scott L. Hooper</i></p> <p>References 5</p> <p><b>2 Electrophysiological Recording Techniques 7<br /></b><i>Scott L. Hooper and Joachim Schmidt</i></p> <p>2.1 Introduction 7</p> <p>2.2 Terminology 8</p> <p>2.3 Intracellular and Patch Clamp Recording 9</p> <p>2.3.1 Recording Electrodes 9</p> <p>2.3.2 Current-Clamp:Measuring Transmembrane Potential 12</p> <p>2.3.3 Voltage Clamp: Measuring Transmembrane Current 15</p> <p>2.3.3.1 Voltage Clamp with Transmembrane Potential as Reference 15</p> <p>2.3.3.2 Voltage Clamp with Preparation (Bath) Ground as Reference 16</p> <p>2.4 Extracellular Recording and Stimulation 17</p> <p>2.5 A Brief History of Electrophysiological Recording 21</p> <p>2.6 Concepts Important to Understanding Neuron Recording Techniques 27</p> <p>2.6.1 Membrane Properties 27</p> <p>2.6.2 Intracellular Recording 29</p> <p>2.6.3 Extracellular Recording 32</p> <p>2.6.3.1 Intracellular Action Potential Shape 33</p> <p>2.6.3.2 Axon Embedded in Uniform, Infinite Volume Conductor 33</p> <p>2.6.3.3 Variations in Extracellular Action Potential Shape Induced by Non-Uniform, Non-Infinite Volume Conductors 42</p> <p>2.6.3.4 Bipolar Recording 44</p> <p>2.6.3.5 Extracellular Action Potential Summary 46</p> <p>Acknowledgements 47</p> <p>References 47</p> <p><b>3 Multi-Unit Recording 55<br /></b><i>Arthur Leblois and Christophe Pouzat</i></p> <p>3.1 Introduction 55</p> <p>3.2 Chapter Organization and Expository Choices 56</p> <p>3.3 Hardware 57</p> <p>3.4 Spike Sorting Methods 60</p> <p>Endnotes 69</p> <p>References 70</p> <p><b>4 The “New Math” of Neuroscience: Genetic Tools for Accessing and Electively Manipulating Neurons 75<br /></b><i>Andreas Schoofs,Michael J. Pankratz, and Martyn Goulding</i></p> <p>4.1 Introduction 75</p> <p>4.2 Restricting Gene Expression to Specific Neurons 76</p> <p>4.2.1 Promoter Bashing, Enhancer Trapping: Binary Systems for Targeted Gene Expression 77</p> <p>4.2.2 Intersectional Strategies 81</p> <p>4.2.3 Temporally Inducible Systems 82</p> <p>4.3 Tracing, Manipulating, and Monitoring Neurons 84</p> <p>4.3.1 Tracing Neuronal Projections and Connections with Fluorescent Reporters 84</p> <p>4.3.2 Viral Tracers for Mapping Neural Connections 85</p> <p>4.3.3 Manipulating Neuronal Function 87</p> <p>4.3.4 Monitoring Neuronal Activity 90</p> <p>4.4 Case Studies 92</p> <p>4.5 Future Perspective 98</p> <p>References 98</p> <p><b>5 Computer Simulation—Power and Peril 107<br /></b><i>Astrid A. Prinz and Scott L. Hooper</i></p> <p>5.1 Introduction 107</p> <p>5.2 Why Model? 107</p> <p>5.3 Modeling Approaches 110</p> <p>5.4 Model Optimization and Validation 118</p> <p>5.5 Beyond Purely ComputationalModels 120</p> <p>5.6 Fundamental Concepts and Frequently Used Models in Motor Control 121</p> <p>5.6.1 How to Predict the Future 121</p> <p>5.6.2 Neuron Models 123</p> <p>5.6.3 Synapse Models 127</p> <p>5.6.4 Muscle Models 128</p> <p>5.6.5 Biomechanical Models 128</p> <p>5.7 The Future 129</p> <p>Acknowledgements 130</p> <p>References 130</p> <p><b>6 Evolution of Motor Systems 135<br /></b><i>Paul S. Katz and Melina E. Hale</i></p> <p>6.1 Introduction 135</p> <p>6.2 Phylogenetics 136</p> <p>6.3 Homology and Homoplasy 138</p> <p>6.4 Levels of Biological Organization 139</p> <p>6.5 Homologous Neurons 139</p> <p>6.6 Deep Homology 142</p> <p>6.7 Homoplasy 145</p> <p>6.8 Convergence in Central Pattern Generators 150</p> <p>6.9 Evolutionary Loss 152</p> <p>6.10 Evolution of Novel Motor Behaviors 152</p> <p>6.11 Three Scenarios for the Evolution of Novel Behavior 154</p> <p>6.11.1 Generalist Neural Circuitry 154</p> <p>6.11.2 Rewired Circuitry 157</p> <p>6.11.3 Functional Rewiring with Neuromodulation 159</p> <p>6.12 Motor System Evolvability 161</p> <p>6.13 Neuron Duplication and Parcellation 162</p> <p>6.14 Divergence of Neural Circuitry 164</p> <p>6.15 Summary and Conclusions 165</p> <p>Acknowledgements 165</p> <p>References 165</p> <p><b>7 Motor Pattern Selection 177</b></p> <p>7.1 Introduction to Motor Pattern Selection in Vertebrates and Invertebrates 178<br /><i>Hans-Joachim Pflüger and Sten Grillner</i></p> <p>References 179</p> <p>7.2 Selection of Action—A Vertebrate Perspective 181</p> <p><i>Sten Grillner and Brita Robertson</i></p> <p>7.2.1 Introduction 181</p> <p>7.2.2 Control of Locomotory Outputs 182</p> <p>7.2.3 The Organization and Role of the Basal Ganglia 184</p> <p>7.2.4 ConceptualModel of the Organization Underlying Selection of Behavior 187</p> <p>7.2.5 The Organization of Motor Control From Cortex (Pallium in Lower Vertebrates) 189</p> <p>7.2.6 The Relative Role of Different Forebrain Structures for Selection of Behavior 189</p> <p>Acknowledgements 190</p> <p>References 191</p> <p>7.3 Motor Pattern Selection and Initiation in Invertebrates with an Emphasis on Insects 195<br /><i>Hans-Joachim Pflüger</i></p> <p>7.3.1 Introduction 195</p> <p>7.3.2 Organization Principles of Relevant Sensory Systems 196</p> <p>7.3.3 Movement-Generating Neural Networks in Invertebrates 196</p> <p>7.3.4 Motor Pattern Selection in Invertebrates 197</p> <p>7.3.4.1 Probabilistic “Selection”: Intrinsically Variable CPGs in Mollusk Feeding 197</p> <p>7.3.4.2 Selection via CPG Coordination 198</p> <p>7.3.4.3 Selection by Neuromodulators or Neurohormones 198</p> <p>7.3.4.4 Selection by Command Neurons Not in the Brain 201</p> <p>7.3.4.5 The Brain is Crucial in the Motor Selection Process 202</p> <p>7.3.5 Two Case Studies 207</p> <p>7.3.6 Concluding Remarks on Invertebrates 213</p> <p>7.3.7 Are There Common Themes between Motor Pattern Selection in</p> <p>Invertebrates and Vertebrates? 213</p> <p>References 216</p> <p><b>8 Neural Networks for the Generation of RhythmicMotor Behaviors 225<br /></b><i>Ronald M. Harris-Warrick and Jan-Marino Ramirez</i></p> <p>8.1 Introduction 225</p> <p>8.2 Concept of the Central Pattern Generator 225</p> <p>8.3 Overall Organization of Rhythmic Motor Networks 227</p> <p>8.4 Identification of CPG Neurons and Synapses: The “Wiring Diagram” 234</p> <p>8.5 Cellular PropertiesThat Shape Network Output: Building Blocks for Network Operation 238</p> <p>8.6 Combined Neural Mechanisms for Rhythmogenesis 240</p> <p>8.7 Ionic Currents Shaping CPG Network Neuron Intrinsic Firing Properties 241</p> <p>8.7.1 Role of Outward Currents in Regulating Pacemaker and Network Activity 241</p> <p>8.7.2 Role of Inward Currents in the Generation of Pacemaker and Network Activity 243</p> <p>8.7.3 Interaction of Inward and Outward Currents in the Generation of Pacemaker Activity 245</p> <p>8.7.4 Homeostatic Plasticity and the Balance between Different Ion Channel Types 245</p> <p>8.7.5 Rapid Changes in Extracellular Ion Concentrations during Rhythmic Network Function 246</p> <p>8.8 Role of Network Synaptic Properties in Organizing Rhythmic Behaviors 246</p> <p>8.9 Variable Output from Motor Networks 249</p> <p>8.10 Conclusions 252</p> <p>Acknowledgements 253</p> <p>References 253</p> <p><b>9 Sensory Feedback in the Control of Posture and Locomotion 263<br /></b><i>Donald H. Edwards and Boris I. Prilutsky</i></p> <p>9.1 Introduction 263</p> <p>9.2 History and Background of Feedback Control 264</p> <p>9.3 Classical Control Theory 264</p> <p>9.4 Nervous System Implementation in the Control of Posture and Limb Movements 267</p> <p>9.5 Organization and Function in Arthropods 274</p> <p>9.5.1 Locomotory System Gross Anatomy 274</p> <p>9.5.2 Proprioceptors and Exteroceptors 274</p> <p>9.5.3 Arthropod Nervous Systems 275</p> <p>9.5.4 Postures and Movement Commands 275</p> <p>9.5.5 Sensory Feedback in the Maintenance of Posture 275</p> <p>9.5.6 Sensory Feedback in Movement andWalking 276</p> <p>9.6 Organization and Function in Vertebrates 282</p> <p>9.6.1 Sensory Feedback in the Maintenance of Posture 282</p> <p>9.6.2 Sensory Feedback and its Integration with Motor Commands in</p> <p>Movement 285</p> <p>9.7 Conclusions 293</p> <p>Acknowledgements 294</p> <p>Endnote 294</p> <p>References 294</p> <p><b>10 Coordination of Rhythmic Movements 305<br /></b><i>Jean-Patrick Le Gal, Réjean Dubuc, and Carmen Smarandache-Wellmann</i></p> <p>10.1 Introduction 305</p> <p>10.2 Overview of Invertebrate CPGs 306</p> <p>10.2.1 Stomatogastric Nervous System: Feeding Circuits in Decapod Crustacea 308</p> <p>10.2.2 Leech Locomotion 315</p> <p>10.2.3 Crayfish Swimmeret System 317</p> <p>10.2.4 Insect Locomotion 319</p> <p>10.2.5 MultipleMechanisms Mediate Coordination in Invertebrate Systems 321</p> <p>10.3 Overview of Vertebrate CPGs 321</p> <p>10.3.1 General Characteristic of Vertebrate CPGs 322</p> <p>10.3.1.1 Locomotor CPGs 322</p> <p>10.3.1.2 Respiratory CPGs 323</p> <p>10.3.1.3 Feeding CPGs 324</p> <p>10.3.2 CPG Interactions within One Motor Function 324</p> <p>10.3.2.1 Unit Generators in Limbless Swimming Vertebrates 324</p> <p>10.3.2.2 Unit Generators in Mammalian Limbs 325</p> <p>10.3.3 CPGs Interactions for Different Motor Functions 327</p> <p>10.3.3.1 Coordination of Respiration and Swallowing 327</p> <p>10.3.3.2 Coordination of Locomotion and Respiration 328</p> <p>10.4 Conclusion 331</p> <p>References 332</p> <p><b>11 Prehensile Movements 341<br /></b><i>Till Bockemühl</i></p> <p>11.1 Introduction: Prehension as Goal-Directed Behavior 341</p> <p>11.2 The Redundancy Problem in Motor Control 343</p> <p>11.3 Redundancy Occurs on Multiple Levels of the Motor System 346</p> <p>11.4 Overcoming the Redundancy Problem 349</p> <p>11.4.1 InvariantMovement Features 350</p> <p>11.4.2 Increasing the Number of Task Conditions 352</p> <p>11.4.3 Reducing the Number of DOFs 357</p> <p>References 361</p> <p><b>12 Muscle, Biomechanics, and Implications for Neural Control 365<br /></b><i>Lena H. Ting and Hillel J. Chiel</i></p> <p>12.1 Introduction 365</p> <p>12.2 Behavioral Context Determines How Motorneuron Activity Is Transformed into Muscle Force and Power 366</p> <p>12.2.1 The Neuromuscular Transform Is History-Dependent 367</p> <p>12.2.1.1 Motorneurons Are Subject to Neuromodulation and History-Dependence That Can Significantly Alter Their Output 368</p> <p>12.2.1.2 Presynaptic Neurotransmitter Release at the Neuromuscular Junction Is History-Dependent 368</p> <p>12.2.1.3 Post-SynapticMuscle Excitation Is History-Dependent and Subject to Modulation 368</p> <p>12.2.1.4 Contractile Dynamics of Cross-Bridge Interactions Are History Dependent 369</p> <p>12.2.1.5 The Molecular Motors of Muscles Give Rise to the Functional and History-Dependent Properties of Muscle Force Generation 369</p> <p>12.2.2 Muscle Power Depends on Behavioral Context 371</p> <p>12.2.3 Muscle Specialization Reflects Behavioral Repertoire 373</p> <p>12.3 Organismal Structures Transform Muscle Force into Behavior 374</p> <p>12.3.1 Effects of Muscle Force Depend on the Properties of the Body and the Environment 375</p> <p>12.3.1.1 The Relative Importance of Inertial, Viscous, and Spring-Like Forces Affect the Role of Muscle Force 375</p> <p>12.3.1.2 Muscle Function Depends on Behavioral Context and Environmental Forces 377</p> <p>12.3.1.3 Biomechanical Affordances and Constraints of Body Structures Affect Muscle Functions 377</p> <p>12.3.2 Muscles Are Multi-Functional 381</p> <p>12.3.3 Specialization of Biomechanical Structures Reflect Behavioral Repertoire 385</p> <p>12.4 Biomechanics Defines Meaningful Patterns of Neural Activity 387</p> <p>12.4.1 Organismal Structures Are Multi-Functional 389</p> <p>12.4.2 Many Functionally-Equivalent Solutions Exist for Sensorimotor Tasks 392</p> <p>12.4.3 Structure and Variability in Motor Patterns Reflect Biomechanics 394</p> <p>12.4.4 Specialization of Neuromechanical Systems Reflect Behavioral Repertoire 399</p> <p>12.5 Conclusions 401</p> <p>Acknowledgements 402</p> <p>References 402</p> <p><b>13 Plasticity and Learning in Motor Control Networks 417<br /></b><i>John Simmers and Keith T. Sillar</i></p> <p>13.1 Introduction 417</p> <p>13.2 Homeostatic Motor Network Assembly 418</p> <p>13.3 Short-Term Motor Learning Conferred by Sodium Pumps 420</p> <p>13.3.1 Swimming CPG Network Plasticity in Xenopus Frog Tadpoles 420</p> <p>13.3.2 Comparative Aspects of Na+ Pump Contribution to Neural Network Function 425</p> <p>13.4 CPG Network Plasticity and Motor Learning Conferred by Operant Conditioning 426</p> <p>13.5 Discussion and Conclusions 432</p> <p>References 436</p> <p><b>14 Bio-inspired Robot Locomotion 443<br /></b><i>Thomas Buschmann and Barry Trimmer</i></p> <p>14.1 Introduction 443</p> <p>14.2 Mechanical Engineering Background and a Biological Example 444</p> <p>14.3 Legged Robots with Skeletal Structures 446</p> <p>14.3.1 Mechanism Design, Sensing, and Actuation 446</p> <p>14.3.2 Basic Dynamics of Legged Locomotion 447</p> <p>14.3.3 Trajectory-OrientedWalking Control 448</p> <p>14.3.4 Limit CycleWalkers 450</p> <p>14.3.5 CPG-Based Control and Step-Phase Control 451</p> <p>14.4 Soft Robots 452</p> <p>14.4.1 Limitations and Advantages of Soft Materials 452</p> <p>14.4.2 The Challenges 453</p> <p>14.4.2.1 Actuators 453</p> <p>14.4.2.2 Sensors 455</p> <p>14.4.2.3 Control of Soft Robots 456</p> <p>14.4.3 Bioinspired Locomotion in Soft Robots 459</p> <p>14.5 Conclusion and Outlook 463</p> <p>References 463</p> <p>Index 473</p>
<p><b> SCOTT L. HOOPER, PhD,</b> is a Professor in the Department of Biological Sciences at Ohio University and Visiting Professor at the University of Cologne. <p><b> ANSGAR BÜSCHGES, PhD,</b> is Professor and Head of the Department of Animal Physiology at the University of Cologne. He has served as Dean of the University of Cologne's Faculty of Mathematics and Natural Sciences and is a member of the Executive Committee of the German Neuroscience Society.
<p><b> A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics </b> <p> The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. <i>Neurobiology of Motor Control</i> brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. <p> The book ranges from the findings of basic scientists studying model organisms such as mollusks and <i>Drosophila,</i> to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. <ul> <li>Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings</li> <li>Offers concise summaries of motor control systems across a variety of animals and movement types</li> <li>Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods</li> <li>Considers unresolved questions and how current scientific advances may be used to solve them going forward</li> </ul> <br> <p> Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, <i>Neurobiology of Motor Control</i> is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.

Diese Produkte könnten Sie auch interessieren:

Verpacktes Leben - Verpackte Technik
Verpacktes Leben - Verpackte Technik
von: Udo Küppers, Helmut Tributsch
PDF ebook
97,99 €
Neuroendocrinology
Neuroendocrinology
von: David A. Lovejoy
PDF ebook
68,99 €
Bioinformatics
Bioinformatics
von: Frédéric Dardel, François Képès
PDF ebook
62,99 €