Details

Nanotechnology for Sustainable Water Resources


Nanotechnology for Sustainable Water Resources


1. Aufl.

von: Ajay Kumar Mishra, Chaudhery Mustansar Hussain

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.02.2018
ISBN/EAN: 9781119323839
Sprache: englisch
Anzahl Seiten: 588

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>In this book, we have summarized recent progresses due to novel nanomaterials for sustainable water resources. Book provides a summary of the state of the art knowledge to scientists, engineers and policy makers, about recent developments due to nanotechnology for sustainable water resources arena. The advances in sustainable water resources technologies in the context of modern society’s interests will be considered preferably which allow to identify grand challenges and directions for future research. The book contributors have been selected from all over the world and the essential functions of the nanotechnologies have presented rather than their anticipated applications. Moreover, up to date knowledge on economy, toxicity and regulation related to nanotechnology are presented in detail. In the end, role of nanotechnology for green and sustainable future has also been briefly debated.</p>
<p>Preface xix</p> <p><b>Part I Nanotechnology for Natural Resources</b></p> <p><b>1 Application of Nanotechnology in Water Treatment, Wastewater Treatment and Other Domains of Environmental Engineering Science –A Broad Scientific Perspective and Critical Review 3<br /></b><i>SukanchanPalit</i></p> <p>1.1 Introduction 4</p> <p>1.2 The Vision of the Study 5</p> <p>1.3 The Need and the Rationale of the Study 6</p> <p>1.4 The Scope of the Study 7</p> <p>1.5 Environmental Sustainability, the Vision to Move Forward and the Immense Challenges 7</p> <p>1.6 Water and Wastewater Treatment – The Scientific Doctrine and Immense Scientific Cognizance 7</p> <p>1.6.1 Nanotechnology and Drinking Water Treatment 8</p> <p>1.6.2 Nanotechnology and Industrial Wastewater Treatment 8</p> <p>1.7 The Scientific Vision of Membrane Science 9</p> <p>1.7.1 Classification of Membrane Separation Processes 9</p> <p>1.7.2 A Review of Water Treatment Membrane Technologies 9</p> <p>1.8 Recent Scientific Endeavour in the Field of Membrane Separation Processes 11</p> <p>1.9 Recent Scientific Pursuit in the Field of Application of Nanotechnology in Water Treatment 11</p> <p>1.10 Scientific Motivation and Objectives in Application of Nanotechnology in Wastewater Treatment 15</p> <p>1.11 Desalination and the Future of Human Society 16</p> <p>1.11.1 Recent Scientific Endeavour in the Field of Desalination Procedure 16</p> <p>1.11.2 Scientific Motivation and Objectives in Desalination Science 18</p> <p>1.12 NanofiltrationTechnologies, the Future of Reverse Osmosis and the Scientific Vision of Global Water Issues 19</p> <p>1.13 Recent Advances in Membrane Science and Technology in Seawater Desalination 19</p> <p>1.14 Recent Scientific Endeavour in the Field of Nanofiltration, Reverse Osmosis, Forward Osmosis and Other Branches of Membrane Science 20</p> <p>1.14.1 Scientific Motivation and Technological Objectives in the Field of Nanofiltration, Reverse Osmosis and the Innovative World of Forward Osmosis 21</p> <p>1.15 Current and Potential Applications for Water and Wastewater Treatment 22</p> <p>1.15.1 Vision of Adsorption Techniques 22</p> <p>1.15.2 Potential Application in Water Treatment 22</p> <p>1.15.3 The Avenues of Membranes and Membrane Processes 23</p> <p>1.15.4 The Science of Disinfection and Microbial Control 23</p> <p>1.15.5 Potential Applications in Water Treatment 24</p> <p>1.16 Water Treatment Membrane Technologies 24</p> <p>1.17 Non-Traditional Advanced Oxidation Techniques and its Wide Vision 25</p> <p>1.17.1 Ozonation Technique and its Broad Application in Environmental Engineering Science 25</p> <p>1.17.2 Scientific Motivation and Objectives in Ozonation Technique 26</p> <p>1.18 Scientific Cognizance, Scientific Vision and the Future Avenues of Nanotechnology 26</p> <p>1.18.1 The True Challenge and Vision of Industrial Wastewater Treatment 26</p> <p>1.19 Advanced Oxidation Processes, Non-Traditional Environmental Engineering Techniques and its Vision for the Future 27</p> <p>1.19.1 Scientific Research Endeavour in the Field of Advanced Oxidation Processes 27</p> <p>1.20 Environmental Sustainability, the Futuristic Technologies and the Wide Vision of Nanotechnology 30</p> <p>1.20.1 Vision of Science, Avenues of Nanotechnology and the Future of Industrial Pollution Control 30</p> <p>1.20.2 Technological Validation, the Science of Industrial Wastewater Treatment and the Vision Towards Future 31</p> <p>1.21 Integrated Water Quality Management System and Global Water Issues 31</p> <p>1.21.1 Groundwater Remediation and Global Water Initiatives 31</p> <p>1.21.2 Arsenic Groundwater Remediation, the Future of Environmental Engineering Science and the Vision for the Future 32</p> <p>1.21.3 Scientific Motivation and Objectives in the Field of Arsenic Groundwater Remediation 32</p> <p>1.21.4 Vision of Application of Nanoscience and Nanotechnology in Tackling Global Groundwater Quality Issues 33</p> <p>1.21.5 Heavy Metal Groundwater Contamination and Solutions 33</p> <p>1.21.6 Arsenic Groundwater Contamination and Vision for the Future 34</p> <p>1.22 Integrated Groundwater Quality Management System and the Vision for the Future 34</p> <p>1.23 Membrane Science and Wastewater Reclamation 34</p> <p>1.24 Future of Groundwater Heavy Metal Remediation and Application of Nanotechnology 35</p> <p>1.25 Future Research and Development Initiatives in the Field of Nanotechnology Applications in Wastewater Treatment 36</p> <p>1.26 Futuristic Vision, the World of Scientific Validation and the Scientific Avenues for the Future 36</p> <p>1.27 Future Research and Development Needs 37</p> <p>1.28 Conclusions 37</p> <p>References 37</p> <p><b>2 Nanotechnology Solutions for Public Water Challenges 41<br /></b><i>Ankita Dhillon and Dinesh Kumar</i></p> <p>2.1 Introduction 42</p> <p>2.2 Application of Nanotechnology in Water and Wastewater Treatment 44</p> <p>2.2.1 Photocatalysis 45</p> <p>2.2.2 Nanofiltration 49</p> <p>2.2.3 Nanosorbents 53</p> <p>2.3 Effects of Nanotechnology 57</p> <p>2.4 Conclusions 58</p> <p>Acknowledgements 59</p> <p>References 59</p> <p><b>3 Nanotechnology: An Emerging Field for Sustainable Water Resources 73<br /></b><i>Pradeep Pratap Singh and Ambika</i></p> <p>3.1 Introduction 73</p> <p>3.2 Classification of Nanomaterials for Wastewater Treatment 74</p> <p>3.2.1 Nanoadsorbents 74</p> <p>3.2.2 Nanocatalysts 75</p> <p>3.2.3 Nanomembranes 75</p> <p>3.3 Synthesis of Nanomaterials 77</p> <p>3.3.1 Conventional Approach for the Production of NPs 77</p> <p>3.3.2 Precipitation of Nanoparticles 77</p> <p>3.3.3 Nanoparticles from Emulsions 77</p> <p>3.3.4 Green Approach for the Synthesis of Nanoparticles 78</p> <p>3.4 Application of Nanotechnology in Wastewater Treatment 78</p> <p>3.4.1 Nanoadsorbents 78</p> <p>3.4.2 Nanocatalysts 81</p> <p>3.4.3 Nanomembranes 86</p> <p>3.4.4 Miscellaneous Nanomaterials 88</p> <p>3.5 Risk of Nanotechnology 89</p> <p>3.6 Conclusions 89</p> <p>References 90</p> <p><b>4 Removal of Hazardous Contaminants from Water or Wastewater Using Polymer Nanocomposites Materials 103<br /></b><i>Felycia Edi Soetaredjo, Suryadi Ismadji, Kuncoro Foe and Gladdy L. Woworuntu</i></p> <p>4.1 Introduction 103</p> <p>4.2 Adsorption of Heavy Metals 104</p> <p>4.3 Adsorption of Dyes 106</p> <p>4.4 Adsorption of Antibiotics and Other Organic Contaminants 111</p> <p>4.5 Processing of Polymer-Based Nanocomposites as Adsorbents 113</p> <p>4.5.1 Exfoliation Adsorption 113</p> <p>4.5.2 Melt Intercalation 114</p> <p>4.5.3 Template Synthesis 115</p> <p>4.5.4 <i>In-Situ </i>Polymerization 115</p> <p>4.6 Clay–Polymer Nanocomposites 116</p> <p>4.7 Carbon Nanotube Polymer Nanocomposites 119</p> <p>4.8 Magnetic Polymer Nanocomposites 119</p> <p>4.9 Adsorption Equilibrium Studies 120</p> <p>4.9.1 Langmuir Isotherm 120</p> <p>4.9.2 Freundlich Isotherm 126</p> <p>4.9.3 Dubinin Radushkevich 126</p> <p>4.9.4 Temkin Adsorption Equation 128</p> <p>4.9.5 Sips Isotherm Equation 129</p> <p>4.9.6 Toth Adsorption Equation 130</p> <p>4.10 Adsorption Kinetic Studies 130</p> <p>4.11 Summary 132</p> <p>Acknowledgment 133</p> <p>References 133</p> <p><b>5 Sustainable Nanocarbons as Potential Sensor for Safe Water 141<br /></b><i>Kumud Malika Tripathi, Anupriya Singh, Yusik Myung, TaeYoung Kim, and Sumit Kumar Sonkar</i></p> <p>5.1 Introduction 141</p> <p>5.2 Recent Advancement in Sustainable Nanocarbons 144</p> <p>5.3 Sustainable Nanocarbons for Safe Water 149</p> <p>5.3.1 Sensing of Toxic Metal Ions 150</p> <p>5.3.2 Sensing of Inorganic Pollutants 156</p> <p>5.3.3 Sensing of Organic Pollutants 161</p> <p>5.3.4 Sensing of Nanomaterials 165</p> <p>5.3.5 Sensing of Byproducts 166</p> <p>5.4 Concluding Remarks and Future Trend 166</p> <p>Acknowledgment 167</p> <p>References 167</p> <p><b>Part 2 Nanosensors as Tools for Water Resources</b></p> <p><b>6 Nanosensors as Tools for Water Resources 179<br /></b><i>Ephraim Vunain and A. K. Mishra</i></p> <p>6.1 Introduction 180</p> <p>6.1.1 Water Resources Contamination Due to Heavy Metals 181</p> <p>6.1.2 Water Resources Contamination Due to Nutrients 182</p> <p>6.2 Contaminant Monitoring Procedures 183</p> <p>6.2.1 Electrochemical-Based Sensors 184</p> <p>6.2.2 Graphene and Carbon Nanotubes (CNTs)-Based Sensors 188</p> <p>6.2.3 Biosensors 189</p> <p>6.2.4 Nanoparticles- and Nanocomposites-Based Sensors 189</p> <p>6.3 Conclusions and Future Perspectives 190</p> <p>References 191</p> <p><b>7 Emerging Nanosensing Strategies for Heavy Metal Detection 199<br /></b><i>S. Varun and S.C.G. Kiruba Daniel</i></p> <p>7.1 Introduction 199</p> <p>7.2 Recent Trends in Nanosensing Strategies: An Overview 201</p> <p>7.2.1 Nanosensors Based on Biosensing Principle 201</p> <p>7.2.2 Nanoparticle-Mediated Electrodes 208</p> <p>7.2.3 Interference Sensing: A New Paradigm 213</p> <p>7.3 Microfluidic Nanotechnology: Emerging Platform for Sensing 214</p> <p>7.3.1 Microfluidic Sensors 214</p> <p>7.3.2 Paper-Based Microfluidic Sensors 214</p> <p>7.4 Summary and Outlook 220</p> <p>Acknowledgement 220</p> <p>References 220</p> <p><b>8 Capture of Water Contaminants by a New Generation of Sorbents Based on Graphene and Related Materials 227<br /></b><i>Ana L. Cukierman and Pablo R. Bonelli</i></p> <p>8.1 Introduction 228</p> <p>8.2 Characterization of Physicochemical, Mechanical, and Magnetic Properties of Graphene-Based Materials 229</p> <p>8.3 Removal of Inorganic and Water-Soluble Organic Contaminants with Graphene-Based Sorbents 231</p> <p>8.3.1 Removal of Inorganic Contaminants: Heavy Metal and Nonmetal Ions 232</p> <p>8.3.2 Removal of Water-Soluble Organic Contaminants: Dyes and Pharmaceuticals 241</p> <p>8.4 Cleanup of Oil Spills and Other Water-Insoluble Organic Contaminants 255</p> <p>8.5 Summary and Outlook 267</p> <p>Acknowledgment 268</p> <p>References 269</p> <p><b>9 Design and Analysis of Carbon-Based Nanomaterials for Removal of Environmental Contaminants 277<br /></b><i>Yoshitaka Fujimoto</i></p> <p>9.1 Introduction 277</p> <p>9.2 Methodology 278</p> <p>9.2.1 First Principles Total Energy Calculation 278</p> <p>9.2.2 Formation Energy 279</p> <p>9.2.3 Adsorption Energy 280</p> <p>9.2.4 Charge Density Difference 280</p> <p>9.2.5 Work Function 280</p> <p>9.2.6 Scanning Tunneling Microscopy Image 280</p> <p>9.2.7 Computational Details 281</p> <p>9.3 Substitutionally Doped Graphene Bilayer 281</p> <p>9.3.1 Structure 281</p> <p>9.3.2 Energetics 282</p> <p>9.3.3 Energy Band Structure 284</p> <p>9.3.4 Work Function 285</p> <p>9.3.5 Scanning Tunneling Microscopy Image 285</p> <p>9.4 Gas Adsorption Effect 287</p> <p>9.4.1 Structure and Energetics 287</p> <p>9.4.2 Energy-Band Structures and Electron States 289</p> <p>9.4.3 Total Charge Density 291</p> <p>9.4.4 Work Function 293</p> <p>9.4.5 Scanning Tunnelling Microscopy Image 294</p> <p>9.5 Conclusions 295</p> <p>Acknowledgment 295</p> <p>References 296</p> <p><b>10 Nanosensors: From Chemical to Green Synthesis for Wastewater Remediation 301<br /></b><i>Priyanka Joshi and Dinesh Kumar</i></p> <p>10.1 Introduction 302</p> <p>10.2 Synthesis of Nanomaterials 303</p> <p>10.2.1 Physical Methods 303</p> <p>10.2.2 Chemical Method 305</p> <p>10.3 Biological Methods 309</p> <p>10.3.1 Biomolecule 309</p> <p>10.3.2 Microorganism 310</p> <p>10.3.3 Plant Materials 311</p> <p>10.4 Application of Nanoparticles 311</p> <p>10.5 Conclusions and Future Prospects 315</p> <p>Acknowledgment 316</p> <p>References 316</p> <p><b>11 As-Prepared Carbon Nanotubes for Water Purification: Pollutant Removal and Magnetic Separation 329<br /></b><i>Jie Ma, Yao Ma and Fei Yu</i></p> <p>11.1 Introduction 330</p> <p>11.2 Experimental Method 331</p> <p>11.2.1 Materials 331</p> <p>11.2.2 Preparation of Magnetic Carbon Nanotube 331</p> <p>11.2.3 Batch Adsorption Experiments 333</p> <p>11.2.4 Characterization Method 335</p> <p>11.3 Removal of Dye from Aqueous Solution by NaClO-Modified Magnetic Carbon Nanotube 336</p> <p>11.3.1 Characterization of Adsorbents 336</p> <p>11.3.2 Adsorption Properties 340</p> <p>11.4 Removal of Toluene, Ethylbenzene, and Xylene from Aqueous Solution by KOH-Activated Magnetic Carbon Nanotube 343</p> <p>11.4.1 Characterization of Adsorbents 343</p> <p>11.4.2 Adsorption Properties 348</p> <p>11.5 Removal of Organic Pollutants from Aqueous Solution by Chitason-Grafted Magnetic Carbon Nanotube 358</p> <p>11.5.1 Characterization of Adsorbents 358</p> <p>11.5.2 Adsorption Properties 359</p> <p>11.6 Summary and Outlook 367</p> <p>Reference 367</p> <p><b>12 Nanoadsorbents: An Approach Towards Wastewater Treatment 371<br /></b><i>Rekha Sharma and Dinesh Kumar</i></p> <p>12.1 Introduction 372</p> <p>12.2 Classification of Nanomaterials as Nanoadsorbents 375</p> <p>12.3 Importance of Nanomaterials in the Preconcentration Process 376</p> <p>12.4 Properties and Mechanisms of Nanomaterials as Adsorbents 377</p> <p>12.4.1 Innate Surface Properties 377</p> <p>12.4.2 External Functionalization 378</p> <p>12.5 Nanoparticles for Water and Wastewater Remediation 379</p> <p>12.5.1 Nanoparticles of Metal Oxide 379</p> <p>12.5.2 Metallic Nanoparticles 380</p> <p>12.5.3 Magnetic Nanoparticles 381</p> <p>12.5.4 Carbonaceous Nanomaterials 382</p> <p>12.5.5 Silicon Nanomaterials 383</p> <p>12.5.6 Nanofibers (NFs) 384</p> <p>12.6 Applications in Aqueous Media 384</p> <p>12.6.1 Nanoparticles 385</p> <p>12.6.2 Nanostructured Mixed Oxides 387</p> <p>12.6.3 Carbonaceous Nanomaterials 388</p> <p>12.6.4 Silicon Nanomaterials 389</p> <p>12.6.5 Nanofibers (NFs) 391</p> <p>12.7 Conclusions 391</p> <p>12.8 Future Scenario 392</p> <p>Acknowledgment 393</p> <p>References 393</p> <p><b>Part 3 Nano-Separation Techniques for Water Resources</b></p> <p><b>13 Hybrid Clay Mineral for Anionic Dye Removal and Textile Effluent Treatment 409<br /></b><i>Fadhila Ayari</i></p> <p>13.1 Introduction 410</p> <p>13.2 Experimental 411</p> <p>13.2.1 Clay Adsorbent 411</p> <p>13.3 Result and Discussion 413</p> <p>13.3.1 Characterizations of Collected Clay 413</p> <p>13.3.2 Characterizations of Hybrid Material 420</p> <p>13.3.3 Adsorption Studies 436</p> <p>13.3.4 Application to Natural Effluent 451</p> <p>13.4 Conclusions 452</p> <p>References 456</p> <p><b>14 Nano-Separation Techniques for Water Resources 461<br /></b><i>Pashupati Pokharel and Mahesh Joshi</i></p> <p>14.1 Current Progress in Nanotechnologies for Water Resources and Wastewater Treatment Processes 462</p> <p>14.2 Nanomaterials in Nano-Separation Techniques for Water Treatment Process 464</p> <p>14.3 Biochar-Based Nanocomposites for the Purification of Water Resources and Wastewater 467</p> <p>14.3.1 Surface Chemistry and Functionalization of Biochar Material 468</p> <p>14.3.2 Pretreatment of Biomass Using Iron/Ion Oxide, Nanometal Oxide/Hydroxide, and Functional Nanoparticles 468</p> <p>14.3.3 Post-Treatment of Biochar Using Iron Ion/Oxide, Functional Nanoparticles, Nanometal Oxide/Hydroxide 470</p> <p>14.3.4 Adsorption of Heavy Metals 470</p> <p>14.3.5 Interaction of Biochar-Based Nanocomposites with Organic Contaminants 471</p> <p>14.3.6 Adsorption of Inorganic Contaminants Other than Heavy Metals 472</p> <p>14.3.7 Adsorption and Instantaneous Degradation of Organic Contaminants 472</p> <p>14.4 Conclusions 473</p> <p>References 473</p> <p><b>15 Recent Advances in Nanofiltration Membrane Techniques for Separation of Toxic Metals from Wastewater 477<br /></b><i>Akil Ahmad, David Lokhat, Yang Wang, Mohd Rafatullah</i></p> <p>15.1 Introduction 478</p> <p>15.2 Membrane Technology 480</p> <p>15.3 Nanofiltration Membrane for Metal Removal/Rejection 483</p> <p>15.4 Summary and Outlook 492</p> <p>Acknowledgment 493</p> <p>References 493</p> <p><b>16 Bacterial Cellulose Nanofibers for Efficient Removal of Hg2+ from Aqueous Solutions 501<br /></b><i>Emel Tamahkar, Deniz Turkmen, Semra Akgonullu, Tahira Qureshi and Adil Denizli</i></p> <p>16.1 Introduction 502</p> <p>16.2 Experimental Method 508</p> <p>16.2.1 Materials 508</p> <p>16.2.2 Production of BC Nanofibers 508</p> <p>16.2.3 Preparation of Cibacron Blue F3GA Attached-Bacterial Cellulose (BC–CB) Nanofibers 508</p> <p>16.2.4 Characterization Studies 509</p> <p>16.2.5 Batch Adsorption Studies 509</p> <p>16.2.6 Competitive Adsorption Studies 510</p> <p>16.2.7 Desorption and Reusability Studies 510</p> <p>16.3 Results and Discussion 511</p> <p>16.3.1 Characterization of Bacterial Cellulose Nanofibers 511</p> <p>16.3.2 Effect of pH 512</p> <p>16.3.3 Effect of Initial Concentration of Hg<sup>2+</sup> 512</p> <p>16.3.4 Competitive Adsorption 515</p> <p>16.3.5 Regeneration of BC–CB Nanofibers 515</p> <p>16.4 Conclusions 516</p> <p>References 518</p> <p><b>Part 4 Sustainable Future with Nanotechnology</b></p> <p><b>17 Nanotechnology Based Separation Systems for Sustainable Water Resources 525<br /></b><i>Susmita Dey Sadhu, Meenakshi Garg and Prem Lata Meena</i></p> <p>17.1 Introduction and Background 526</p> <p>17.2 Nanotechnology in Water Treatment 530</p> <p>17.3 Nanofiltration—A Membranous Technique 533</p> <p>17.3.1 What is Filtration? 533</p> <p>17.3.2 Membrane Filtration Technology 533</p> <p>17.3.3 Nanofiltration 534</p> <p>17.3.4 Role of Nanofiltration 535</p> <p>17.3.5 Different Polymers and Their Membranes in Nanofiltration 536</p> <p>17.4 Nanoadsorbents 539</p> <p>17.4.1 Types of Adsorbents 539</p> <p>17.4.2 Heavy Metal Removal from Wastewater 540</p> <p>17.4.3 Organic Waste Removal 541</p> <p>17.5 Nanoparticles 547</p> <p>17.5.1 Dendrimer 548</p> <p>17.5.2 Metals and Their Oxides 549</p> <p>17.5.3 Zeolites 550</p> <p>17.5.4 Carbaneous and Carbon Nanotubes 551</p> <p>17.6 Recent Researches in Nanoseparation Techniques of Wastewater 552</p> <p>17.6.1 Graphene from Sugar and its Application in Water Purification 552</p> <p>17.6.2 Understanding the Degradation Pathway of the Pesticide, Chlorpyrifos by Noble Metal Nanoparticles 552</p> <p>17.6.3 Measuring and Modelling Adsorption of PAHs to Carbon Nanotubes Over a Six Order of Magnitude Wide Concentration Range 553</p> <p>17.6.4 “SOS Water” Mobile Water Purifier 553</p> <p>17.6.5 An Electrochemical Carbon Nanotube Filter for Water Treatment Applications 554</p> <p>17.6.6 High Speed Water Sterilization System for Developing Countries 554</p> <p>17.6.7 Metal Nanoparticles on Hierarchical Carbon Structures: New Architecture for Robust Water Purifiers 554</p> <p>17.7 Conclusions 555</p> <p>References 555</p> <p>Index 559</p>
<p><strong>Ajay Kumar Mishra</strong> is a full Professor at the Nanotechnology and Water Sustainability Research Unit at College of Science, Engineering & Technology, University of South Africa. He received his MPhil and PhD degrees in 2003 and 2007 respectively from The University of Delhi, India. He is also working as an Adjunct Professor at Jiangsu University, China. His research interests include synthesis of multifunctional nanomaterials, nanocomposites, biopolymers, smart materials, CNT and graphene-based composite materials and water research. He has authored more than 100 scientific journal articles and edited several books. <p><strong>C.M. Hussain</strong> is an Adjunct Professor, Academic Advisor and Lab Director at the New Jersey Institute of Technology (NJIT), Newark, USA.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €