Details
Nanotechnology for Microfluidics
1. Aufl.
142,99 € |
|
Verlag: | Wiley-VCH (D) |
Format: | |
Veröffentl.: | 31.12.2019 |
ISBN/EAN: | 9783527818334 |
Sprache: | englisch |
Anzahl Seiten: | 448 |
DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
The book focuses on microfluidics with applications in nanotechnology. The first part summarizes the recent advances and achievements in the field of microfluidic technology, with emphasize on the the influence of nanotechnology. The second part introduces various applications of microfluidics in nanotechnology, such as drug delivery, tissue engineering and biomedical diagnosis.
<p>Preface xiii</p> <p><b>1 Micro/Nanostructured Materials from Droplet Microfluidics </b><b>1<br /></b><i>Xin Zhao, Jieshou Li, and Yuanjin Zhao</i></p> <p>1.1 Introduction 1</p> <p>1.2 MMs from Droplet Microfluidics 4</p> <p>1.2.1 Simple Spherical Microparticles (MPs) 4</p> <p>1.2.2 Janus MPs 7</p> <p>1.2.3 Core–Shell MPs 7</p> <p>1.2.4 Porous MPs 9</p> <p>1.2.5 Other MMs 10</p> <p>1.3 NMs from Droplet Microfluidics 13</p> <p>1.3.1 Inorganic NMs 13</p> <p>1.3.2 Organic NMs 16</p> <p>1.3.3 Other NMs 16</p> <p>1.4 Applications of the Droplet-Derived Materials 18</p> <p>1.4.1 Drug Delivery 18</p> <p>1.4.2 Cell Microencapsulation 23</p> <p>1.4.3 Tissue Engineering 25</p> <p>1.4.4 Biosensors 29</p> <p>1.4.5 Barcodes 32</p> <p>1.5 Conclusion and Perspectives 35</p> <p>References 36</p> <p><b>2 Digital Microfluidics for Bioanalysis </b><b>47<br /></b><i>Qingyu Ruan, Jingjing Guo, Yang Wang, Fenxiang Zou, Xiaoye Lin, Wei Wang, and Chaoyong Yang</i></p> <p>2.1 Introduction 47</p> <p>2.2 Theoretical Background 48</p> <p>2.2.1 Theoretical Background 48</p> <p>2.2.1.1 Thermodynamic Approach 49</p> <p>2.2.1.2 Energy Minimization Approach 50</p> <p>2.2.1.3 Electromechanical Approach 52</p> <p>2.2.2 Contact Angle Saturation 53</p> <p>2.2.3 Basic Microfluidic Functions by EWOD Actuation 53</p> <p>2.3 Device Fabrication 55</p> <p>2.4 Digital Microfluidics Integrated with Other Devices 56</p> <p>2.4.1 Sample Processing Systems Integrated with Digital Microfluidics 56</p> <p>2.4.1.1 World-to-chip Interface 56</p> <p>2.4.1.2 Magnet Separation 58</p> <p>2.4.1.3 Heater Module 59</p> <p>2.4.2 Detection Systems Integrated with Digital Microfluidics 59</p> <p>2.4.2.1 Optical Methods 59</p> <p>2.4.2.2 Electrochemical Methods 61</p> <p>2.4.2.3 Other Detection Methods 62</p> <p>2.5 Biological Applications on DMF 63</p> <p>2.5.1 Enzyme Assays 63</p> <p>2.5.2 Immunoassay 63</p> <p>2.5.3 DNA-Based Applications 66</p> <p>2.5.4 Cell-Based Applications 68</p> <p>2.6 Conclusions and Perspectives 72</p> <p>References 73</p> <p><b>3 Nanotechnology and Microfluidics for Biosensing and Biophysical Property Assessment: Implications for Next-Generation <i>in Vitro </i>Diagnostics </b><b>83<br /></b><i>Zida Li and Ho Cheung Shum</i></p> <p>3.1 Introduction 83</p> <p>3.1.1 Nanotechnology and Microfluidics 84</p> <p>3.2 Fundamentals of Nanotechnology and Microfluidics 86</p> <p>3.2.1 Nanotechnology 86</p> <p>3.2.2 Microfluidics 87</p> <p>3.3 Biomolecule Sensing 88</p> <p>3.3.1 Techniques Based on Optical Readout 89</p> <p>3.3.1.1 Localized Surface Plasmon Resonance 89</p> <p>3.3.1.2 Surface-Enhanced Raman Spectroscopy 90</p> <p>3.3.1.3 Nanoengineered Fluorescence Probes 91</p> <p>3.3.1.4 Nanotopography-Based Cell Capturing 93</p> <p>3.3.2 Techniques Based on Electrical Readouts 93</p> <p>3.3.2.1 Electrochemical Reactions 93</p> <p>3.3.2.2 Nanotransistor-Based Assays 94</p> <p>3.4 Biophysical Property Sensing 95</p> <p>3.4.1 Cell Contractility Measurement 96</p> <p>3.4.2 Cell Deformability 98</p> <p>3.4.3 Fluid Rheology 99</p> <p>3.4.4 Electrophysiology 99</p> <p>3.5 Concluding Remarks 100</p> <p>Acknowledgments 100</p> <p>References 101</p> <p><b>4 Microfluidic Tools for the Synthesis of Bespoke Quantum Dots </b><b>109<br /></b><i>Shangkun Li, Jeff C. Hsiao, Philip D. Howes, and Andrew J. deMello</i></p> <p>4.1 Introduction 109</p> <p>4.1.1 Microfluidics in the Chemical and Biological Sciences 109</p> <p>4.1.2 Compound Semiconductor Nanoparticles 109</p> <p>4.1.3 Microfluidic Tools for Nanoparticle Synthesis 112</p> <p>4.2 Design Considerations 114</p> <p>4.2.1 Continuous-Flow Microfluidics 115</p> <p>4.2.2 Segmented-Flow Microfluidics 115</p> <p>4.3 Continuous-Flow Microfluidic Synthesis of Quantum Dots 118</p> <p>4.3.1 Homogenous Core-Type Quantum Dots in Continuous Flow 118</p> <p>4.3.1.1 Cadmium Sulfide (CdS) 118</p> <p>4.3.1.2 Cadmium Selenide (CdSe) 119</p> <p>4.3.2 Heterogenous Core/Shell Quantum Dots in Continuous Flow 121</p> <p>4.3.2.1 Zinc Selenide/Zinc Sulfide (ZnSe/ZnS) 121</p> <p>4.3.2.2 Cadmium Selenide/Zinc Sulfide (CdSe/ZnS) and Cadmium Telluride/Zinc Sulfide (CdTe/ZnS) 121</p> <p>4.3.2.3 Copper Indium Sulfide/Zinc Sulfide (CuInS<sub>2</sub>/ZnS) 123</p> <p>4.3.2.4 Indium Phosphide/Zinc Sulfide (InP/ZnS) 125</p> <p>4.3.3 Heterogenous Core/Multishell Quantum Dots in Continuous Flow 125</p> <p>4.3.3.1 Cadmium Selenide/Cadmium Sulfide/Zinc Sulfide (CdSe/CdS/ZnS) 126</p> <p>4.3.4 Summary of QD Classes 128</p> <p>4.4 Segmented-Flow Microfluidic Synthesis of Quantum Dots 128</p> <p>4.4.1 Homogenous Structure Quantum Dots in Segmented Flow 129</p> <p>4.4.1.1 Cadmium Sulfide (CdS) 129</p> <p>4.4.1.2 Cadmium Selenide (CdSe) 130</p> <p>4.4.1.3 Lead Sulfide (PbS) and Lead Selenide (PbSe) 131</p> <p>4.4.1.4 Perovskite QDs 132</p> <p>4.4.2 Heterogenous Core/Shell Quantum Dots in Segmented Flow 134</p> <p>4.4.2.1 Copper Indium Sulfide/Zinc Sulfide (CuInS<sub>2</sub>/ZnS) 134</p> <p>4.4.3 Multistep Synthesis of QDs in Segmented Flow 135</p> <p>4.4.4 Nucleation and Growth Studies of Quantum Dots 138</p> <p>4.5 Conclusions and Outlook 140</p> <p>References 141</p> <p><b>5 Microfluidics for Immuno-oncology 149</b><br /><i>Chao Ma, Jacob Harris, Renee-Tyler T. Morales, and Weiqiang Chen</i></p> <p>5.1 Introduction 149</p> <p>5.2 Microfluidics for Single Immune Cell Analysis 153</p> <p>5.2.1 Single Immune Cells 153</p> <p>5.2.1.1 T Cells 153</p> <p>5.2.1.2 MΦs 156</p> <p>5.2.1.3 DCs 157</p> <p>5.2.1.4 B Cells 158</p> <p>5.2.2 Microfluidics for Immune and Tumor Cell Interaction Analysis 159</p> <p>5.2.2.1 T-cell Priming and Activation by APCs 159</p> <p>5.2.2.2 Killing of Cancer Cells by Immune Effector Cells 162</p> <p>5.2.2.3 Interaction Between Cancer Cells and MΦs 163</p> <p>5.3 Microfluidics for Tumor Immune Microenvironment Analysis 163</p> <p>5.3.1 Modeling the Tumor Immune Microenvironment 163</p> <p>5.3.1.1 T-cell Trafficking and Migration 164</p> <p>5.3.1.2 T-cell Priming and Activation by APCs 165</p> <p>5.3.1.3 APC Processing and Presentation of TAAs 165</p> <p>5.3.1.4 Interaction Between Cancer Cells and MΦs 166</p> <p>5.3.2 On-chip Testing of Tumor Immunotherapy 166</p> <p>5.3.2.1 TCR T Cells 167</p> <p>5.3.2.2 Immune Checkpoint Blockade 167</p> <p>5.4 Concluding Remarks and Future Perspectives 170</p> <p>Acknowledgments 171</p> <p>References 172</p> <p><b>6 Paper and Paper Hybrid Microfluidic Devices for Point-of-care Detection of Infectious Diseases </b><b>177<br /></b><i>Hamed Tavakoli, Wan Zhou, Lei Ma, Qunqun Guo, and XiuJun Li</i></p> <p>6.1 Introduction 177</p> <p>6.2 Fabrication of Paper-Based Microfluidic Devices 179</p> <p>6.2.1 Fabrication Techniques for Paper-Based Microfluidic Platforms 179</p> <p>6.2.1.1 Physical Blocking of Pores in Paper 180</p> <p>6.2.1.2 Physical Deposition of Reagents on Paper Surface 181</p> <p>6.2.1.3 Chemical Modification 182</p> <p>6.2.1.4 Other Techniques 183</p> <p>6.2.2 Fabrication of Paper Hybrid Microfluidic Devices 183</p> <p>6.3 Application of Paper and Paper Hybrid Microfluidic Devices for Infectious Disease Diagnosis 184</p> <p>6.3.1 Colorimetric Detection 185</p> <p>6.3.2 Fluorescence Detection 187</p> <p>6.3.3 Electrochemical Detection 191</p> <p>6.4 Integration of Nanosensors on Paper and Paper Hybrid Microfluidic Devices for Infectious Disease Diagnosis 193</p> <p>6.4.1 Carbon-Based Nanosensors 195</p> <p>6.4.2 Gold-Based Nanosensors 198</p> <p>6.4.3 Other Nanosensors 200</p> <p>6.5 Summary and Outlook 202</p> <p>Acknowledgment 202</p> <p>References 203</p> <p><b>7 Biological Diagnosis Based on Microfluidics and Nanotechnology </b><b>211<br /></b><i>Navid Kashaninejad, Mohammad Yaghoobi, Mohammad Pourhassan-Moghaddam, Sajad R. Bazaz, Dayong Jin, and Majid E.Warkiani</i></p> <p>7.1 Introduction 211</p> <p>7.2 Quantum Dot-Based Microfluidic Biosensor for Biological Diagnosis 212</p> <p>7.2.1 Qdot-Based Disease Diagnosis Using Microfluidics 213</p> <p>7.3 Upconversion Nanoparticles 219</p> <p>7.4 Fluorescent Biodots 221</p> <p>7.5 Digital Microfluidic Systems for Diagnosis Detection 223</p> <p>7.6 Paper-Based Diagnostics 226</p> <p>7.6.1 Structure and Chemistry of Paper 226</p> <p>7.6.2 Applications of Paper-Based Devices in the Diagnostics 227</p> <p>7.6.2.1 Labeled Biosensing 228</p> <p>7.6.2.2 Label-Free Biosensing 228</p> <p>7.6.3 Integration of Nanoparticles with Paper-Based Microfluidic Devices 228</p> <p>7.6.3.1 Gold Nanomaterials 228</p> <p>7.6.3.2 Fluorescent Nanomaterials 229</p> <p>7.7 Conclusion and Future Perspective 231</p> <p>Conflicts of Interest 231</p> <p>Acknowledgment 231</p> <p>References 232</p> <p><b>8 Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses </b><b>239<br /></b><i>Dong Wang, Ho N. Chan, Zeyu Liu, Sean Micheal, Lijun Li, Dorsa B. Baniani, Ming J. A. Tan, Lu Huang, Jiantao Wang, and Hongkai Wu</i></p> <p>8.1 Introduction 239</p> <p>8.2 Cell 240</p> <p>8.2.1 Blood Cell Counting 240</p> <p>8.2.2 Characterization of CD64 Expression 241</p> <p>8.2.3 Enumeration of CD4+ T Lymphocytes for HIV Monitoring 242</p> <p>8.2.4 Circulating Tumor Cell (CTC) Isolation and Analysis 243</p> <p>8.3 Nucleic Acid 245</p> <p>8.3.1 Nonisothermal Amplification 245</p> <p>8.3.2 Isothermal Amplification 246</p> <p>8.4 Protein 253</p> <p>8.4.1 Novel Chemistry and Nanomaterials 253</p> <p>8.4.2 3D-Printed Microfluidic Devices 256</p> <p>8.4.3 Digital and Droplet Microfluidics 259</p> <p>8.5 Metabolites and Small Molecules 262</p> <p>8.6 Conclusion and Outlook 271</p> <p>Acknowledgments 271</p> <p>References 271</p> <p><b>9 Microfluidics in Microbiome and Cancer Research </b><b>281<br /></b><i>Barath Udayasuryan, Daniel J. Slade, and Scott S. Verbridge</i></p> <p>9.1 Introduction 281</p> <p>9.2 What is theMicrobiome? 282</p> <p>9.2.1 Composition and Biogeography 282</p> <p>9.2.2 The Microbiome and Cancer 285</p> <p>9.2.3 <i>Helicobacter pylori </i>and Gastric Cancer 286</p> <p>9.2.4 <i>Fusobacterium nucleatum </i>and CRC 287</p> <p>9.2.5 Bacterial Invasion 288</p> <p>9.3 Studying the Microbiome 289</p> <p>9.3.1 2D Models 291</p> <p>9.3.2 3D Models 291</p> <p>9.3.3 Organ-on-a-Chip and the Application of Microfluidics 295</p> <p>9.4 Microfluidic Intestine Chip Models 297</p> <p>9.4.1 Gut-on-a-Chip Model 297</p> <p>9.4.2 Co-culture of the Gut-on-a-Chip with Microbiota 298</p> <p>9.4.3 The HuMiX Model 299</p> <p>9.4.4 Anaerobic Human Intestine Chip 301</p> <p>9.4.5 Anoxic-Oxic Interface (AOI)-on-a-Chip 303</p> <p>9.4.6 Future Directions 304</p> <p>9.5 Concluding Remarks and Future Perspectives 306</p> <p>Acknowledgments 308</p> <p>References 308</p> <p><b>10 Microfluidic Synthesis of Functional Nanoparticles </b><b>319<br /></b><i>Ziwei Han and Xingyu Jiang</i></p> <p>10.1 Introduction 319</p> <p>10.2 Fabrication of Microfluidic Chips 320</p> <p>10.2.1 Fabrication of Microchannels: Photolithography 321</p> <p>10.2.2 Fabrication of PDMS-Based Microfluidic Chips 321</p> <p>10.2.3 Pressure Tolerance 321</p> <p>10.3 Microfluidic Synthesis of Functional Nanoparticles 323</p> <p>10.3.1 Mixing Strategy 323</p> <p>10.3.1.1 Hydrodynamic Focusing 323</p> <p>10.3.1.2 Microstructure to Enhance Mixing Efficiency 324</p> <p>10.3.2 Bionanoparticle Interactions 325</p> <p>10.3.2.1 Well-Controlled Size and Monodispersity 325</p> <p>10.3.2.2 Surface Modification 326</p> <p>10.3.2.3 Mechanical Properties 327</p> <p>10.3.2.4 Controllable Multilayer Structure 328</p> <p>10.4 Microfluidic Assembly of Nanoparticles for Biological and Medical Applications 329</p> <p>10.4.1 Drug Delivery 330</p> <p>10.4.1.1 pH-Sensitive Drug Release 330</p> <p>10.4.1.2 Hydrophilic Drug Delivery 331</p> <p>10.4.1.3 Photoresponsive Drug Release 332</p> <p>10.4.1.4 Gene Delivery 332</p> <p>10.4.2 Imaging 332</p> <p>10.4.2.1 MRI 332</p> <p>10.4.2.2 Fluorescence Imaging 333</p> <p>10.4.2.3 Ultrasonic Imaging 334</p> <p>10.4.3 Biosensing 334</p> <p>10.4.4 Theranostics 336</p> <p>10.5 Prospects of Microfluidic Synthesis 337</p> <p>Acknowledgment 338</p> <p>References 339</p> <p><b>11 Design Considerations for Muscle-Actuated Biohybrid Devices </b><b>347<br /></b><i>Yoshitake Akiyama, Sung-Jin Park, and Shuichi Takayama</i></p> <p>11.1 Introduction 347</p> <p>11.2 Characteristics and Applicability of Muscles for Biohybrid Devices 348</p> <p>11.2.1 Heart Muscle (Cardiomyocytes) 348</p> <p>11.2.2 Skeletal Muscle Cells 350</p> <p>11.2.3 Smooth Muscle Cells 351</p> <p>11.2.4 Nonmammalian Muscle Cells 352</p> <p>11.3 Arrangement of Muscle Cells and Tissues on Biohybrid Devices 352</p> <p>11.3.1 Interfaces Between Muscle Cells and Material 353</p> <p>11.3.1.1 Interfaces in 2D Culture 353</p> <p>11.3.1.2 Interfaces in 3D Culture 354</p> <p>11.3.2 Mechanical Pairing of Muscles 355</p> <p>11.3.3 Interface Between Medium and Air 356</p> <p>11.4 Oxygen Supply in Muscle Tissue Engineering 356</p> <p>11.4.1 Equation and Conditions for Numerical Simulations 357</p> <p>11.4.2 Oxygen Distribution under Static Culture 357</p> <p>11.4.3 Oxygen Distribution in Microfluidic Devices 359</p> <p>11.4.4 Other Approaches to Improve Oxygen Supply 360</p> <p>11.5 Contractile Force of Muscle Bundles and Stimulations 361</p> <p>11.5.1 Tissue-Engineered Muscle Consisting of C2C12 Cells 361</p> <p>11.5.2 Tissue-Engineered Muscle Consisting of Primary Myoblasts 364</p> <p>11.6 Control of Muscle Contractions 366</p> <p>11.6.1 Electrical Stimulation 366</p> <p>11.6.2 Optical Stimulation 367</p> <p>11.6.3 Others 368</p> <p>11.7 Conclusions and Future Challenges 368</p> <p>11.7.1 Completely 3D-Printed Biohybrid Devices 368</p> <p>11.7.2 Integration with Other Tissues 369</p> <p>11.7.3 Long-Term Maintenance and Self-healing 369</p> <p>11.7.4 Exploring Applications 370</p> <p>Acknowledgments 370</p> <p>References 370</p> <p><b>12 Micro- and Nanoscale Biointerrogation and Modulation of Neural Tissue – From Fundamental to Clinical and Military Applications 383</b><br /><i>Jordan Moore, Diego Alzate-Correa, Devleena Dasgupta, William Lawrence, Daniel Dodd, Craig Mathews, Ian Valerio, Cameron Rink, Natalia Higuita-Castro, and Daniel Gallego-Perez</i></p> <p>12.1 Introduction 383</p> <p>12.2 General Principles 385</p> <p>12.2.1 Physics of Miniaturized Systems 385</p> <p>12.2.2 Material Properties 385</p> <p>12.3 Areas of Study 386</p> <p>12.3.1 Neurodevelopment 386</p> <p>12.3.2 Neuro-oncology 388</p> <p>12.3.3 Neurodegenerative Disorders 389</p> <p>12.3.4 Traumatic Brain Injury 392</p> <p>12.4 Applications 394</p> <p>12.4.1 Neuron-Directed Cellular Reprogramming 394</p> <p>12.4.2 Tissue Nanotransfection 396</p> <p>12.4.3 Cancer Interrogation 398</p> <p>12.4.4 FISH On-Chip for Alzheimer’s Disease 401</p> <p>12.4.5 On-chip Brain Injury 403</p> <p>12.4.6 Military 405</p> <p>12.5 Limitations and Future Outlook 406</p> <p>12.6 Summary 407</p> <p>References 408</p> <p>Index 419</p>
Xingyu Jiang is Professor in the National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, China. He received his PhD in Chemistry from Harvard University. After a short postdoctoral fellowship with Professor George Whitesides, he joined NCNST where he was selected "Hundred Talents Plan" Professor. His research interests include surface chemistry, microfluidics, micro- and nano-fabrication, cell biology and immunoassays. He has published more than 180 scientific papers. He received several awards including National Distinguished Young Scholar award by the National Science Foundation of China in 2010, Federation of Asian Chemical Societies Distinguished Young Chemist Award in Analytical chemistry and Huang Jiasi Biomedical Engineering Award by the Chinese Society Of Biomedical Engineering in 2015.