Details

Nanopatterned and Nanoparticle-Modified Electrodes


Nanopatterned and Nanoparticle-Modified Electrodes


Advances in Electrochemical Sciences and Engineering 1. Aufl.

von: Richard C. Alkire, Philip N. Bartlett, Jacek Lipkowski

151,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 13.03.2017
ISBN/EAN: 9783527340965
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Volume XVII in the "Advances in Electrochemical Science and Engineering" series, this monograph covers progress in this rapidly developing field with a particular emphasis on important applications, including spectroscopy, medicinal chemistry and analytical chemistry.<br> As such it covers nanopatterned and nanoparticle-modified electrodes for analytical detection, surface spectroscopy, electrocatalysis and a fundamental understanding of the relation between the electrode structure and its function. <br> Written by a group of international experts, this is a valuable resource for researchers working in such fields as electrochemistry, materials science, spectroscopy, analytical and medicinal chemistry.
<p>List of Contributors XI</p> <p>Series Preface XVII</p> <p>Preface XIX</p> <p><b>1 Surface Electrochemistry with Pt Single-Crystal Electrodes 1<br /></b><i>Victor Climent and Juan M. Feliu</i></p> <p>1.1 Introduction 1</p> <p>1.2 Concepts of Surface Crystallography 2</p> <p>1.3 Preparation of Single-Crystal and Well-Oriented Surfaces 9</p> <p>1.4 Understanding the Voltammetry of Platinum 13</p> <p>1.4.1 CO Charge Displacement Experiment 15</p> <p>1.4.2 Stepped Surfaces 18</p> <p>1.5 Potential of Zero Charge of Platinum Single Crystals 24</p> <p>1.5.1 Total Charge Curves in Coulometric Analysis 29</p> <p>1.5.2 Model for the Estimation of the Potential of Zero Free Charge 32</p> <p>1.5.3 Applications of Electrocapillary Equation 32</p> <p>1.6 The Laser-Induced Temperature Jump Method and the Potential of Maximum Entropy 34</p> <p>1.7 Electrocatalytic Studies with Single-Crystal Electrodes 40</p> <p>1.7.1 Carbon Monoxide on Platinum 40</p> <p>1.7.2 Oxygen Reduction 43</p> <p>1.8 Concluding Remarks 47</p> <p>Acknowledgments 49</p> <p>References 49</p> <p><b>2 Electrochemically Shape-Controlled Nanoparticles 59<br /></b><i>Lu Wei, Na Tian, Zhi Y. Zhou, and Shi G. Sun</i></p> <p>2.1 Introduction 59</p> <p>2.2 Metal Nanoparticles of High-Index Facets and High Surface Energy 60</p> <p>2.2.1 NPs of {hk0} High-Index Facets 61</p> <p>2.2.2 NPs of {hkk} High-Index Facets 66</p> <p>2.2.3 NPs of {hhl} High-Index Facets 66</p> <p>2.2.4 NPs of {hkl} High-Index Facets 69</p> <p>2.2.5 Electrochemistry-Mediated Shape Evolution 71</p> <p>2.2.6 Electrochemical Milling and Faceting 72</p> <p>2.3 Metallic Alloy Nanoparticles of High-Index Facets and High Surface Energy 73</p> <p>2.3.1 Pd–Pt Alloy NPs 74</p> <p>2.3.2 Pt–Rh Alloy NPs 76</p> <p>2.3.3 Fe–Ni Alloy NPs 77</p> <p>2.4 Metal Nanoparticles of Low-Index Facets 79</p> <p>2.4.1 Fe NPs with High Surface Energy 79</p> <p>2.4.2 Cu NPs 81</p> <p>2.4.3 Pt NPs 83</p> <p>2.5 Nanoparticles of Metal Oxides and Chalcogenides 84</p> <p>2.5.1 Cuprous Oxide 84</p> <p>2.5.2 Lead Sulfide 89</p> <p>2.6 Summary and Perspectives 90</p> <p>Acknowledgment 91</p> <p>References 91</p> <p><b>3 Direct Growth of One-, Two-, and Three-Dimensional Nanostructured Materials at Electrode Surfaces 97<br /></b><i>Sapanbir S. Thind and Aicheng Chen</i></p> <p>3.1 Introduction 97</p> <p>3.2 Growth of 1D Nanomaterials 98</p> <p>3.3 Nanowires 98</p> <p>3.3.1 Formation of Na2Ti6O13, H2Ti3O7, and TiO2 Nanowires 99</p> <p>3.3.2 Synthesis of Various Nanowires Using Porous Anodic Alumina (PAA) Templates 104</p> <p>3.3.3 TiO2 Nanowires through Thermal Oxidation Treatment 106</p> <p>3.4 Nanorods 108</p> <p>3.4.1 Effect of Oxygen Source on the Formation of Titanium Oxide Films 110</p> <p>3.5 Nanotubes 113</p> <p>3.5.1 Nanotube Growth Control 116</p> <p>3.5.2 Modification of TiO2 Nanotubes 119</p> <p>3.6 Direct Growth of Two-Dimensional Nanomaterials 121</p> <p>3.6.1 Nanoplates 121</p> <p>3.6.2 Graphene Oxide Nanosheets 126</p> <p>3.7 Growth of Three-Dimensional Nanomaterials 128</p> <p>3.7.1 Nanodendrites 128</p> <p>3.7.2 Nanoflowers 130</p> <p>3.8 Summary 135</p> <p>Acknowledgments 136</p> <p>References 136</p> <p><b>4 One-Dimensional Pt Nanostructures for Polymer Electrolyte Membrane Fuel Cells 145<br /></b><i>Gaixia Zhang and Shuhui Sun</i></p> <p>4.1 Introduction 145</p> <p>4.2 Shape-Controlled Synthesis of 1D Pt Nanostructures 146</p> <p>4.2.1 1D Pt Nanowires/Nanorod and Nanotubes 148</p> <p>4.3 1D Pt-Based Nanostructures as Electrocatalysts for PEM Fuel Cells 176</p> <p>4.3.1 Reaction Mechanisms for PEMFCs 176</p> <p>4.3.2 Cathode Catalysts for ORR in DHFC 176</p> <p>4.3.3 Anode Catalysts for MOR in DMFC 181</p> <p>4.3.4 Anode Catalysts for FAOR in Direct Formic Acid Fuel Cell (DFAFC) 185</p> <p>4.4 Conclusions and Outlook 189</p> <p>References 190</p> <p><b>5 Investigations of Capping Agent Adsorption for Metal Nanoparticle Stabilization and the Formation of Anisotropic Gold Nanocrystals 199<br /></b><i>Ian J. Burgess</i></p> <p>5.1 Introduction and Scope 199</p> <p>5.2 The Multifunctional Role of Nanoparticle Capping Agents 199</p> <p>5.3 Controlled Growth of Anisotropic Nanoparticle 201</p> <p>5.4 Measuring Capping Agent Adsorption 202</p> <p>5.5 Experimental Techniques 203</p> <p>5.5.1 Single-Crystal Gold Electrode Preparation 203</p> <p>5.5.2 Chronocoulometry and the Back-Integration Technique 205</p> <p>5.5.3 Gibbs Excesses of the Acid/Base Forms of the Capping Agents 205</p> <p>5.5.4 Gibbs Excesses of Co-adsorbed Capping Agents 207</p> <p>5.6 Citrate-Stabilized Nanoparticles 208</p> <p>5.6.1 Citrate Adsorption on Au(111) Electrodes 208</p> <p>5.6.2 Citrate-Stabilized Gold Nanoparticles 210</p> <p>5.7 Quaternary Ammonium Surfactants as Capping Agents 212</p> <p>5.7.1 Model Surfactant Adsorption on Gold Single Crystals 212</p> <p>5.7.2 Halide Co-adsorption on Gold Single Crystals 214</p> <p>5.7.3 Implications for Nanoparticle Systems 215</p> <p>5.8 Pyridine Derivative Capping Agents 217</p> <p>5.8.1 4-Dimethylaminopyridine (DMAP)-Stabilized Au Nanoparticles 217</p> <p>5.8.2 DMAP Adsorption on Polycrystalline Au 219</p> <p>5.8.3 Competitive Adsorption Effects 226</p> <p>5.8.4 DMAP Adsorption on Single-Crystal Au Surfaces 229</p> <p>5.8.5 Directed Growth Using DMAP as a Capping Agent 231</p> <p>5.8.6 4-Methoxypyridine (MOP)-Stabilized Au Nanoparticles 235</p> <p>5.9 Conclusions and Perspectives 239</p> <p>Acknowledgments 239</p> <p>References 240</p> <p><b>6 Intercalation of Ions into Nanotubes for Energy Storage – A Theoretical Study 247<br /></b><i>Leila Mohammadzadeh, Aleksej Goduljan, Fernanda Juarez, Paola Quaino, Elizabeth Santos, and Wolfgang Schmickler</i></p> <p>6.1 Introduction 247</p> <p>6.2 Ionization in Nanotubes 248</p> <p>6.3 Electrostatic Interactions 250</p> <p>6.4 Details of the Investigated Systems 251</p> <p>6.5 Ionic Charges 252</p> <p>6.6 Effect of Ion Insertion on the Band Structure 253</p> <p>6.7 Screening of the Coulomb Potential 255</p> <p>6.7.1 Potential along the Axis 255</p> <p>6.7.2 Effective Image Radius 257</p> <p>6.8 Energetics of Ion Insertion 259</p> <p>6.8.1 Optimum Position 259</p> <p>6.8.2 Insertion Energies in CNTs 261</p> <p>6.8.3 Ions in Gold Nanotubes 262</p> <p>6.9 Capacity of a Narrow Nanotube in Contact with an Ionic Liquid 264</p> <p>6.10 Other Literature 266</p> <p>6.11 Outlook 267</p> <p>Acknowledgments 268</p> <p>References 268</p> <p><b>7 Surface Spectroscopy of Nanomaterials for Detection of Diseases 271<br /></b><i>Jean F. Masson and Kristy S. McKeating</i></p> <p>7.1 An Introduction to Plasmonics 271</p> <p>7.2 An Overview of Plasmonic Techniques 272</p> <p>7.2.1 Surface Plasmon Resonance (SPR) 272</p> <p>7.2.2 Surface-Enhanced Raman Spectroscopy (SERS) 274</p> <p>7.2.3 Metal-Enhanced Fluorescence (MEF) 276</p> <p>7.2.4 Electrically Conductive Plasmonic Substrates 278</p> <p>7.3 Plasmonic Spectroelectrochemistry 279</p> <p>7.3.1 Electrochemical SPR and LSPR 279</p> <p>7.3.2 Electrochemical SERS 282</p> <p>7.3.3 Metal-Enhanced Fluorescence Electrochemistry 284</p> <p>7.4 Plasmonic Biosensing for the Detection of Diseases 285</p> <p>7.5 Outlook and Perspectives 287</p> <p>References 288</p> <p><b>8 Raman Spectroscopy at Nanocavity-Patterned Electrodes 295<br /></b><i>Philip N. Bartlett</i></p> <p>8.1 Introduction 295</p> <p>8.2 Fabrication Methods 295</p> <p>8.2.1 Top Down 295</p> <p>8.2.2 Bottom-Up or Self-Organizing Approaches 299</p> <p>8.2.3 Metal Evaporation 301</p> <p>8.2.4 Electrodeposition 304</p> <p>8.3 Plasmonics 307</p> <p>8.3.1 Plasmonics of Nanohole Arrays 310</p> <p>8.3.2 Sphere Segment Void (SSV) Plasmonics 310</p> <p>8.4 Raman Spectroscopy 314</p> <p>8.5 Surface-Enhanced Raman Spectroscopy 316</p> <p>8.6 SERS on Nanohole Arrays 318</p> <p>8.7 SERS at Sphere Segment Void (SSV) Surfaces 319</p> <p>8.8 Some Applications in Electrochemical SERS 324</p> <p>8.9 Other Surface-Enhanced Phenomena 324</p> <p>8.10 Conclusions 326</p> <p>Acknowledgment 327</p> <p>References 327</p> <p><b>9 Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) of Electrode Surfaces 339<br /></b><i>Jian F. Li, Rajapandiyan Panneerselvam, and Zhong Q. Tian</i></p> <p>9.1 Introduction 339</p> <p>9.2 Advantages of Isolated Mode over Contact Mode 342</p> <p>9.3 3D-FDTD Simulations 343</p> <p>9.4 Synthesis of SHINs 345</p> <p>9.5 Characterization of SHINs 348</p> <p>9.6 Applications of SHINERS in Electrochemistry 350</p> <p>9.6.1 SHINERS Study of Pyridine Adsorption on Au(hkl) and Pt(hkl) Single-Crystal Electrodes 351</p> <p>9.6.2 SHINERS for Probing the Benzotriazole Film Formation on Cu(100), Cu(111), and Cu(Poly) Electrodes 353</p> <p>9.6.3 SHINERS Study of Ionic Liquids at Single-Crystal Electrode Surfaces 354</p> <p>9.6.4 In Situ Investigation of Electrooxidation Processes at Gold Single-Crystal Surfaces 357</p> <p>9.6.5 Quantitative Analysis of Temporal Changes in the Passive Layer at a Gold Electrode Surface 359</p> <p>9.7 Summary and Outlook 361</p> <p>Acknowledgments 362</p> <p>References 362</p> <p><b>10 Plasmonics-Based Electrochemical Current and Impedance Imaging 373<br /></b><i>Xiaonan Shan, Yixian Wang, and Nongjian Tao</i></p> <p>10.1 Introduction 373</p> <p>10.2 Principle of Plasmonics-Based Electrochemical Current Microscopy (PECM) 374</p> <p>10.2.1 Electrochemical Reactions 374</p> <p>10.2.2 Relationship between Current and SPR Signals 375</p> <p>10.3 Principle of Plasmonics-Based Electrochemical Impedance Microscopy (PEIM) 377</p> <p>10.4 Imaging Local Electrochemical Current by PECM 379</p> <p>10.4.1 Experiment Setup 379</p> <p>10.4.2 Mapping Local Redox Reactions with PECM 380</p> <p>10.4.3 Detecting Trace Chemicals 381</p> <p>10.4.4 Spatial Resolution and Current Detection Limit 383</p> <p>10.4.5 Imaging Local Square-Wave Voltammetry 386</p> <p>10.5 Imaging the Electrocatalytic Activity of Single Nanoparticles 389</p> <p>10.5.1 Experiment 390</p> <p>10.5.2 Imaging Electrocatalytic Current of Single Pt Nanoparticles 390</p> <p>10.6 Mapping Local Quantum Capacitance of Graphene with PEIM 393</p> <p>10.6.1 Experiments 394</p> <p>10.6.2 Imaging Local Quantum Capacitance of Graphene 394</p> <p>10.6.3 Quantum Capacitance 396</p> <p>10.6.4 Local Quantum Capacitance and Charge Impurity Effect 398</p> <p>10.7 Conclusions 398</p> <p>References 399</p> <p>Index 403</p>
<p><b>Richard C. Alkire</b> is Professor Emeritus of Chemical & Biomolecular Engineering Charles and Dorothy Prizer Chair at the University of Illinois, Urbana, USA. He obtained his degrees at Lafayette College and University of California at Berkeley. He has received numerous prizes, including Vittorio de Nora Award and Lifetime National Associate award from National Academy.</p> <p><b>Philip N. Bartlett</b> is Head of the Electrochemistry Section, Deputy Head of Chemistry for Strategy, and Associate Dean for Enterprise in the Faculty of Natural and Environmental Sciences at the University of Southampton. He received his PhD from Imperial College London and was a Lecturer at the University of Warwick and a Professor for Physical Chemistry at the University of Bath, before moving to his current position. His research interests include bioelectrochemistry, nanostructured materials, and chemical sensors.</p> <p><b>Jacek Lipkowski</b> is Professor at the Department of Chemistry and Biochemistry at the University of Guelph, Canada. His research interests focus on surface analysis and interfacial electrochemistry. He has authored over 120 publications and is a member of several societies, including a Fellow of the International Society of Electrochemistry.</p>

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €