Details

Nanocellulose


Nanocellulose

From Fundamentals to Advanced Materials
1. Aufl.

von: Jin Huang, Alain Dufresne, Ning Lin

153,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 25.03.2019
ISBN/EAN: 9783527807444
Sprache: englisch
Anzahl Seiten: 504

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Comprehensively introduces readers to the production, modifications, and applications of nanocellulose</b></p> <p>This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties.</p> <p>Featuring contributions from many noted experts in the field, <i>Nanocellulose: From Fundamentals to Advanced Materials</i> examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development; reinforcing mechanism of cellulose nanocrystals in nanocomposites; and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose.</p> <ul> <li>Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy</li> <li>Covers new reports on the application of nanocellulose</li> <li>Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications</li> </ul> <p><i>Nanocellulose: From Fundamentals to Advanced Materials</i> is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.</p>
<p>Preface xiii</p> <p>Acknowledgments xv</p> <p><b>1 Introduction to Nanocellulose 1<br /></b><i>Jin Huang, Xiaozhou Ma, Guang Yang, </i>and <i>Dufresne Alain</i></p> <p>1.1 Introduction 1</p> <p>1.2 Preparation of Nanocellulose 2</p> <p>1.2.1 Cellulose Nanocrystals 2</p> <p>1.2.2 Cellulose Nanofibers 3</p> <p>1.2.3 Bacterial Nanocellulose 4</p> <p>1.3 Surface Modification of Nanocellulose 4</p> <p>1.3.1 Esterification 7</p> <p>1.3.2 Oxidation 7</p> <p>1.3.3 Etherification 8</p> <p>1.3.4 Amidation 8</p> <p>1.3.5 Other Chemical Methods 8</p> <p>1.3.6 Physical Interaction 9</p> <p>1.4 Nanocellulose-Based Materials and Applications 9</p> <p>1.5 Conclusions and Prospects 13</p> <p>References 15</p> <p><b>2 Structure and Properties of Cellulose Nanocrystals 21<br /></b><i>Chunyu Chang, Junjun Hou, Peter R. Chang, </i>and<i> Jin Huang</i></p> <p>2.1 Introduction 21</p> <p>2.2 Extraction of Cellulose Nanocrystals 21</p> <p>2.2.1 Extraction of Cellulose Nanocrystals by Acid Hydrolysis 21</p> <p>2.2.2 Pretreatments of Cellulose Before Acid Hydrolysis 27</p> <p>2.2.3 Other Methods of Preparing Cellulose Nanocrystals 31</p> <p>2.3 Structures and Properties of Cellulose Nanocrystals 32</p> <p>2.3.1 Physical Properties of Cellulose Nanocrystals 32</p> <p>2.3.2 Properties of Cellulose Nanocrystal Suspension 39</p> <p>References 45</p> <p><b>3 Structure and Properties of Cellulose Nanofibrils 53<br /></b><i>Pei Huang, Chao Wang, Yong Huang, </i>and<i> Min Wu</i></p> <p>3.1 Production of CNF 53</p> <p>3.1.1 Chemical Bleaching 54</p> <p>3.1.2 Mechanical Disintegration 54</p> <p>3.1.2.1 Homogenization 54</p> <p>3.1.2.2 Grinding 58</p> <p>3.1.2.3 Ball-milling 59</p> <p>3.1.2.4 Ultrasonication 59</p> <p>3.1.2.5 Steam Explosion 61</p> <p>3.1.2.6 Aqueous Counter Collision 61</p> <p>3.1.2.7 Refining 62</p> <p>3.1.2.8 Cryocrushing 62</p> <p>3.1.2.9 Twin-Screw Extrusion 62</p> <p>3.1.2.10 Other Methods 63</p> <p>3.1.3 Pretreatment 63</p> <p>3.2 Features and Properties 64</p> <p>3.2.1 Morphology of CNF 64</p> <p>3.2.2 Rheology 64</p> <p>3.2.3 CNF in Different Forms 65</p> <p>3.2.3.1 Suspensions 65</p> <p>3.2.3.2 Powders 66</p> <p>3.2.3.3 Films 67</p> <p>3.2.3.4 Hydrogels 70</p> <p>3.2.3.5 Aerogels CNF 72</p> <p>3.3 Conclusion 72</p> <p>References 74</p> <p><b>4 Synthesis, Structure, and Properties of Bacterial Cellulose 81<br /></b><i>Muhammad Wajid Ullah, Sehrish Manan, Sabella J. Kiprono, Mazhar Ul-Islam, </i>and<i> Guang Yang</i></p> <p>4.1 Introduction 81</p> <p>4.2 Biogenesis of Bacterial Cellulose 83</p> <p>4.2.1 Biochemistry of BC Synthesis 83</p> <p>4.2.2 Biochemical Pathway of BC Production 85</p> <p>4.2.3 Molecular Regulation of BC Synthesis 87</p> <p>4.3 Structure and Exciting Features of Bacterial Cellulose 88</p> <p>4.3.1 Chemical Structure and Properties 89</p> <p>4.3.2 Physiological Features 89</p> <p>4.3.3 Self-assembly and Crystallization 90</p> <p>4.3.4 Ultrafine Thin Fibrous Structure 90</p> <p>4.3.5 Macrostructure Control and Orientation 91</p> <p>4.3.6 Porosity and Materials Absorption Potential of BC for Composite Synthesis 91</p> <p>4.3.7 Biocompatibility 92</p> <p>4.3.8 Biodegradability 92</p> <p>4.4 Production of Bacterial Cellulose: Synthesis Approaches 93</p> <p>4.4.1 Static Fermentative Cultivation: Production of BC Membrane, Film, or Sheet 93</p> <p>4.4.2 Shaking Fermentative Cultivation: Production of BC Pellets 94</p> <p>4.4.3 Agitation Fermentative Cultivation: Production of BC Granules 94</p> <p>4.4.3.1 Rotating Disk Reactor 95</p> <p>4.4.3.2 Trickling Bed Reactor 95</p> <p>4.5 Additives to Enhance BC Production 95</p> <p>4.5.1 Carboxymethylcellulose 97</p> <p>4.5.2 Organic Acids 97</p> <p>4.5.3 Vitamin C 97</p> <p>4.5.4 Sodium Alginate 99</p> <p>4.5.5 Alcohols 99</p> <p>4.5.6 SSGO 99</p> <p>4.5.7 Lignosulfate 100</p> <p>4.5.8 Agar and Xanthan 100</p> <p>4.5.9 Thin Stillage 100</p> <p>4.6 Strategies Toward Low-Cost BC Production 101</p> <p>4.6.1 Fruit Juices 101</p> <p>4.6.2 Sugarcane Molasses 101</p> <p>4.6.3 Agricultural and Industrial Wastes 103</p> <p>4.6.4 Food Wastes 104</p> <p>4.7 Conclusions and Future Prospects 105</p> <p>Acknowledgment 105</p> <p>References 106</p> <p><b>5 Surface Chemistry of Nanocellulose 115<br /></b><i>Ge Zhu </i>and<i> Ning Lin</i></p> <p>5.1 Brief Introduction to Nanocellulose Family 115</p> <p>5.1.1 Cellulose Nanocrystals (CNCs) 115</p> <p>5.1.2 Cellulose Nanofibrils (CNFs) 117</p> <p>5.1.3 Bacterial Cellulose (BC) 117</p> <p>5.2 Surface Modification of Nanocellulose 119</p> <p>5.2.1 Physical Adsorption of Surfactants 119</p> <p>5.2.2 Sulfonation 121</p> <p>5.2.3 TEMPO-oxidation 122</p> <p>5.2.4 Esterification 123</p> <p>5.2.5 Silylation 125</p> <p>5.2.6 Grafting Onto 126</p> <p>5.2.7 Grafting From 131</p> <p>5.2.7.1 Ring-Opening Polymerization (ROP) 132</p> <p>5.2.7.2 Living Radical Polymerization (LRP) 134</p> <p>5.2.8 Chemical Modification from End Hemiacetal 137</p> <p>5.3 Advanced Functional Modifications 139</p> <p>5.3.1 Fluorescent and Dye Molecules 139</p> <p>5.3.2 Amino Acid and DNA 142</p> <p>5.3.3 Self-cross-linking of Nanocrystals 144</p> <p>References 145</p> <p><b>6 Current Status of Nanocellulose-Based Nanocomposites 155<br /></b><i>Xiaozhou Ma, Yuhuan Wang, Yang Shen, Jin Huang, </i>and<i> Alain Dufresne</i></p> <p>6.1 Introduction 155</p> <p>6.2 Cellulose Nanocrystal-Filled Nanocomposites 156</p> <p>6.2.1 Polyolefin-Based Nanocomposites 156</p> <p>6.2.2 Rubber-Based Nanocomposites 161</p> <p>6.2.3 Polyester-Based Nanocomposites 164</p> <p>6.2.4 Polyurethane- and Waterborne Polyurethane-Based Nanocomposites 167</p> <p>6.2.5 Epoxy- and Waterborne Epoxy-Based Nanocomposites 169</p> <p>6.2.6 Natural Polymer-Based Nanocomposites 171</p> <p>6.3 Fibrillated Cellulose-Filled Nanocomposites 172</p> <p>6.3.1 Polyolefin-Based Nanocomposites 172</p> <p>6.3.2 Rubber-Based Nanocomposites 176</p> <p>6.3.3 Polyester-Based Nanocomposites 178</p> <p>6.3.4 Polyurethane- andWaterborne Polyurethane-Based Nanocomposites 180</p> <p>6.3.5 Natural Polymer-Based Nanocomposites 182</p> <p>6.3.6 Other Polymer Nanocomposites Filled with Fibrillated Cellulose 184</p> <p>6.4 Conclusion and Prospect 186</p> <p>References 186</p> <p><b>7 Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites 201<br /></b><i>Yaoyao Chen, Lin Gan, Jin Huang, </i>and<i> Alain Dufresne</i></p> <p>7.1 Percolation Approach 201</p> <p>7.1.1 Mean-Field Theory 202</p> <p>7.1.2 Percolation Model 204</p> <p>7.1.3 Factors Influencing the Percolation Network Formation 208</p> <p>7.2 Interfacial Behaviors Between Cellulose Nanocrystals and Matrix 211</p> <p>7.2.1 Effect of Functional Groups on CNC Surface on Interfacial Interaction 211</p> <p>7.2.2 Effect of Segmental Entanglement Mediated with Grafted Chains on CNC Surface 225</p> <p>7.2.3 Role of Co-continuous Structure Derived from Chemical Coupling of Filler/Matrix 229</p> <p>7.2.3.1 Thiol−ene Coupling Process Between Modified Cellulose Nanocrystals (CNCs) and Matrix 230</p> <p>7.2.3.2 Huisgen Cycloaddition Click Chemistry Between Modified CNCs and Matrices 232</p> <p>7.2.3.3 Schiff’s Base Reaction Between Cellulose Nanocrystals (CNCs) and Matrix 233</p> <p>7.2.3.4 Esterification Reaction Between CNCs and The Matrix 237</p> <p>7.2.3.5 Chemical Coupling Between Hydroxyl Groups of Matrix and Aldehyded CNCs or Modified CNCs 237</p> <p>7.3 Conclusions 242</p> <p>References 243</p> <p><b>8 Role of Cellulose Nanofibrils in Polymer Nanocomposites 251<br /></b><i>Thiago H. S. Maia, Marília Calazans, Vitor Lima, Francys K. V.Moreira, and Alessandra de Almeida Lucas</i></p> <p>8.1 Introduction 251</p> <p>8.2 Characteristics of Cellulose Nanofibrils 252</p> <p>8.3 Mechanical Properties of CNF Polymer Nanocomposites 253</p> <p>8.3.1 Thermoset Resins 254</p> <p>8.3.2 Thermoplastics 255</p> <p>8.3.3 Waterborne Polymer Systems 257</p> <p>8.4 Effects of Extrusion on Mechanical Properties of PE/CNF Nanocomposites 258</p> <p>8.5 Effect of Fiber Size and Lignin Presence 264</p> <p>8.6 Multifunctionality: Optical and Barrier Properties of CNF Nanocomposites 267</p> <p>8.7 Outlooks in CNF Nanocomposites 269</p> <p>References 269</p> <p><b>9 Advanced Materials Based on Self-assembly of Cellulose Nanocrystals 277<br /></b><i>Lin Gan, Siyuan Liu, Dong Li, and Jin Huang</i></p> <p>9.1 Self-assembly Structure of CNCs 277</p> <p>9.1.1 Structure of CNC Liquid Crystals 278</p> <p>9.1.2 Components of CNC Self-assembly 279</p> <p>9.1.3 Form of CNC Self-assembly Products 279</p> <p>9.2 Self-assembly Methods and Materials 281</p> <p>9.2.1 Casting Method and Spin Coating Method 281</p> <p>9.2.2 Vacuum-Assisted Self-assembly 283</p> <p>9.2.3 Evaporation-Induced Self-assembly 284</p> <p>9.3 Structural Adjustment of CNC Self-assembly 284</p> <p>9.3.1 Cholesteric Structure of Neat CNC Films 284</p> <p>9.3.2 Cholesteric Structure and Cross-linking Structure in Gel 286</p> <p>9.3.3 Cholesteric Structure in Bulk Materials of CNC Composite Self-assembly 288</p> <p>9.3.4 Nematic Structure 290</p> <p>9.4 Modifying Surface Chemical Structure of CNC 291</p> <p>9.5 Properties of CNC Self-assembly 295</p> <p>9.5.1 Mechanical Properties 295</p> <p>9.5.1.1 Mechanical Properties of CNC Films 295</p> <p>9.5.1.2 Mechanical Properties of CNC Composite Films 295</p> <p>9.5.2 Iridescent Color 298</p> <p>9.5.2.1 Iridescent Color Control of CNC Films 298</p> <p>9.5.2.2 Iridescent Color Control of CNC Composite Materials 300</p> <p>9.5.2.3 Optical Control of CNC Self-assembly Gels 302</p> <p>9.5.3 Plasmonic Properties of CNC 304</p> <p>9.6 Potential Applications 305</p> <p>9.6.1 Oil/Water Separation 305</p> <p>9.6.2 Application of Optical Materials 306</p> <p>9.6.2.1 Optical Application of CNC Films 306</p> <p>9.6.2.2 Optical Application of CNC Composite Films 306</p> <p>9.6.3 Sensors 307</p> <p>References 309</p> <p><b>10 Potential Application Based on Colloidal Properties of Cellulose Nanocrystals 315<br /></b><i>Shiyu Fu </i>and<i> Linxin Zhong</i></p> <p>10.1 Colloidal Properties of CNC and Applications in Functional Materials 315</p> <p>10.2 Nanocellulose for Paper and Packaging 324</p> <p>10.2.1 Nanocellulose for Paper Coating 326</p> <p>10.2.2 Microfibrillated Cellulose Coated Paper for Delivery System 328</p> <p>10.2.3 Water-Resistant Nanopaper Based on Modified Nanocellulose 329</p> <p>10.2.4 Effect of Chemical Composition on Microfibrillar Cellulose Film 334</p> <p>10.2.5 Antimicrobial Diffusion Films Based on Microfibrillated Cellulose 336</p> <p>10.3 Nanocellulose for Wood Coatings 339</p> <p>References 341</p> <p><b>11 Strategies to Explore Biomedical Application of Nanocellulose 349<br /></b><i>Yanjie Zhang, Peter R. Chang, Xiaozhou Ma, Ning Lin, </i>and<i> Jin Huang</i></p> <p>11.1 Introduction 349</p> <p>11.2 Research on Biological Toxicity of Nanocellulose 349</p> <p>11.3 Application of Nanocellulose for Immobilization and Recognition of Biological Macromolecules 355</p> <p>11.4 Application of Nanocellulose for Cell Imaging 360</p> <p>11.5 Application of Nanocellulose for Cell Scaffolds 361</p> <p>11.6 Application of Nanocellulose in Tissue Engineering 366</p> <p>11.6.1 Tissue Repairing, Regeneration, and Healing 366</p> <p>11.6.1.1 Skin Tissue Repairing 368</p> <p>11.6.1.2 Bone Tissue Regeneration 370</p> <p>11.6.2 Tissue Replacement 371</p> <p>11.6.2.1 Artificial Blood Vessels 371</p> <p>11.6.2.2 Soft Tissues, Meniscus, and Cartilage 373</p> <p>11.6.2.3 Nucleus Pulposus Replacement 375</p> <p>11.7 Application of Nanocellulose in Drug Carrier and Delivery 375</p> <p>11.8 Application of Nanocellulose as Biomedical Materials 382</p> <p>11.8.1 Antimicrobial Nanomaterials 382</p> <p>11.8.1.1 Nanocellulose Incorporated with Inorganic Antimicrobial Agents 385</p> <p>11.8.1.2 Nanocellulose Incorporated with Organic Antimicrobial Agents 386</p> <p>11.8.2 Medical Composite Material 388</p> <p>11.9 Summary 389</p> <p>References 389</p> <p><b>12 Application of Nanocellulose in Energy Materials and Devices 397<br /></b><i>Gang Chen </i>and<i> Zhiqiang Fang</i></p> <p>12.1 Introduction 397</p> <p>12.2 Nanocellulose for Lithium Ion Batteries (LIBs) 398</p> <p>12.2.1 Nanocellulose-Based Electrodes 398</p> <p>12.2.2 Nanocellulose-Based Separators 401</p> <p>12.2.3 Nanocellulose-Based Electrolytes 403</p> <p>12.2.4 Nanocellulose-Based Binders 403</p> <p>12.3 Nanocellulose for Supercapacitors 404</p> <p>12.3.1 Nanocellulose As a Substrate 405</p> <p>12.3.2 Nanocellulose As a Nano-template 406</p> <p>12.3.3 Nanocellulose As a Mesoporous Membrane 410</p> <p>12.4 Nanocellulose for Other Energy Devices 411</p> <p>12.4.1 Fuel Cells 411</p> <p>12.4.2 Solar Cells 412</p> <p>12.4.3 Nanogenerators 414</p> <p>12.5 Conclusion and Outlook 415</p> <p>References 416</p> <p><b>13 Exploration of Other High-Value Applications of Nanocellulose 423<br /></b><i>Ruitao Cha, Xiaonan Hao, Kaiwen Mou, Keying Long, Juanjuan Li,</i> and<i> Xingyu Jiang</i></p> <p>13.1 Fire Resistant Materials 423</p> <p>13.1.1 Introduction 423</p> <p>13.1.2 Flame Retardant Additives 424</p> <p>13.1.2.1 Halogenated Flame Retardants 424</p> <p>13.1.2.2 Phosphorus-Based Flame Retardants 424</p> <p>13.1.2.3 Nitrogen-Based Flame Retardants 424</p> <p>13.1.2.4 Silicon-Based Flame Retardants 424</p> <p>13.1.2.5 Mineral Flame Retardants 425</p> <p>13.1.2.6 Nanoparticles 425</p> <p>13.1.3 Fire Resistance of Clay Nanopaper Based on Nanocellulose 425</p> <p>13.1.4 Conclusion 432</p> <p>13.2 Thermal Insulation Materials 432</p> <p>13.2.1 Introduction 432</p> <p>13.2.2 Thermal Building Insulation Materials 432</p> <p>13.2.2.1 Mineral Wool 433</p> <p>13.2.2.2 Expanded Polystyrene (EPS) 433</p> <p>13.2.2.3 Polyurethane (PUR) 433</p> <p>13.2.2.4 Aerogel 433</p> <p>13.2.3 Thermal Insulation Performance of Nanocellulose-Based Materials 434</p> <p>13.2.4 Conclusion 437</p> <p>13.3 The Templated Materials 438</p> <p>13.3.1 Introduction 438</p> <p>13.3.2 Synthesis of Magnetic Composite Aerogels 442</p> <p>13.3.3 Synthesis of Inorganic Hollow Nanotube Aerogels 454</p> <p>13.3.4 The Self-assembled CNC Templates 458</p> <p>13.3.5 Conclusion 464</p> <p>References 464</p> <p>Index 475</p>
<p><b>Jin Huang, PhD,</b> is a highly regarded Professor recognized nationally and internationally whose research focuses on chemical and physical methodology of manufacturing green materials from natural polymer resources.</p> <p><b>Alain Dufresne, PhD,</b> is Professor in the Department of Converting Biomaterials Packaging in the International School of Paper, Print Media and Biomaterials (Pagora) at University of Grenoble Alpes.</p> <p><b>Ning Lin, PhD,</b> is Associate Professor in the School of Chemistry, Chemical Engineering and Life Science at Wuhan University of Technology.</p>
<p><b>Comprehensively introduces readers to the production, modifications, and applications of nanocellulose</b> <p>This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties. <p>Featuring contributions from many noted experts in the field, <i>Nanocellulose: From Fundamentals to Advanced Materials</i> examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development, reinforcing mechanism of cellulose nanocrystals in nanocomposites, and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose. <ul> <li>Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy</li> <li>Covers new reports on the application of nanocellulose</li> <li>Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications</li> </ul> <p><i>Nanocellulose: From Fundamentals to Advanced Materials</i> is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €