Details

Nanobiosensors


Nanobiosensors

From Design to Applications
1. Aufl.

von: Aiguo Wu, Waheed S. Khan

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 11.02.2020
ISBN/EAN: 9783527345168
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read<br> <br> Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology.<br> <br> Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc.<br> <br> * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins<br> * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research<br> * Goes to a wide scientific and industry audience<br> Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.
<p><b>1 Basics of Biosensors and Nanobiosensors </b><b>1<br /></b><i>Pravin Bhattarai and Sadaf Hameed</i></p> <p>1.1 Introduction 1</p> <p>1.2 Biosensor and Its Working Principle 3</p> <p>1.3 Characteristics of a Biosensor 4</p> <p>1.3.1 Selectivity 4</p> <p>1.3.2 Reproducibility 4</p> <p>1.3.3 Stability 5</p> <p>1.3.4 Sensitivity and Linearity 5</p> <p>1.4 Biosensor Evolution: A Brief Outlook 6</p> <p>1.5 Types of Biosensors 6</p> <p>1.5.1 Electrochemical Biosensors (ECBs) 6</p> <p>1.5.1.1 Potentiometric Biosensors 8</p> <p>1.5.1.2 Voltammetric/Amperometric 8</p> <p>1.5.1.3 Impedance (Electrical Impedance Spectroscopy, EIS) 8</p> <p>1.5.1.4 Conductometric 9</p> <p>1.5.2 Optical Biosensors 9</p> <p>1.5.2.1 Surface Plasmon Resonance 10</p> <p>1.5.2.2 Evanescent Wave Fluorescence Biosensors 10</p> <p>1.5.3 Piezoelectric Biosensors 11</p> <p>1.5.4 Electronic Biosensors: Based on Field-Effect Transistor 12</p> <p>1.6 On the Basis of the Use of Biorecognition Elements: Catalytic Versus Affinity Biosensors 13</p> <p>1.6.1 Enzymatic Biosensors 13</p> <p>1.6.2 Immunosensors 13</p> <p>1.6.3 DNA Aptamer Biosensors 14</p> <p>1.6.4 Peptide-Based Biosensors 14</p> <p>1.6.5 Whole-Cell Biosensors 14</p> <p>1.7 Application of Biosensors 15</p> <p>1.7.1 Biosensors in Microbiology 15</p> <p>1.7.2 Biosensors for Environmental Monitoring Applications 16</p> <p>1.7.3 Biosensors for Cancer Biomarker Identification 16</p> <p>1.7.4 Biosensor in the Detection of Infectious Diseases 16</p> <p>1.8 Conclusion 17</p> <p>Acknowledgment 17</p> <p>References 17</p> <p><b>2 Transduction Process-Based Classification of Biosensors </b><b>23<br /></b><i>Fang Yang, Yuanyuan Ma, Stefan G. Stanciu, and Aiguo Wu</i></p> <p>2.1 Introduction 23</p> <p>2.2 Electrochemical Biosensors 24</p> <p>2.2.1 Potentiometric Biosensors 25</p> <p>2.2.2 Impedimetric Biosensors 26</p> <p>2.2.3 Conductometric Biosensors 28</p> <p>2.3 Optical Biosensors 29</p> <p>2.3.1 Biosensors Based on Surface Plasmon Resonance (SPR) 29</p> <p>2.3.2 Raman and Fourier Transform Infrared Spectroscopy (FT-IR) 30</p> <p>2.3.3 Biosensors Based on Fluorescence Effect 31</p> <p>2.4 Mass-Based Biosensors 32</p> <p>2.4.1 Piezoelectric Biosensors 32</p> <p>2.4.2 Quartz Crystal Microbalance (QCM) 33</p> <p>2.4.3 Surface Acoustic Wave (SAW) 34</p> <p>2.5 Thermal Biosensors 35</p> <p>2.5.1 Thermometric Sensors 35</p> <p>2.5.2 Terahertz Effect 36</p> <p>2.5.3 Thermal Radiation 37</p> <p>2.6 Energy Biosensors 38</p> <p>2.6.1 Adenosine Triphosphate 39</p> <p>2.6.2 Fluorescence Resonance Energy 39</p> <p>2.7 Conclusion 40</p> <p>Acknowledgments 40</p> <p>References 40</p> <p><b>3 Novel Nanomaterials for Biosensor Development </b><b>45<br /></b><i>Sadaf Hameed and Pravin Bhattarai</i></p> <p>3.1 Introduction 45</p> <p>3.2 Graphene and Its Composites 46</p> <p>3.2.1 Graphene and Their Composite-Based Biosensors 48</p> <p>3.2.1.1 Graphene and Their Composite-Based Electrochemical Biosensors 49</p> <p>3.2.1.2 Graphene and Their Composite-Based Field-Effect Transistor Biosensors 50</p> <p>3.3 Carbon Nanotubes and Their Hybrids 51</p> <p>3.3.1 Biosensors Based on Carbon Nanotubes and Their Hybrids 53</p> <p>3.4 Nitride-Based Biosensors 57</p> <p>3.4.1 Biosensing Application of Nitride-Based Nanomaterials 58</p> <p>3.5 Metal and Metal Oxide Nanoparticles for Biosensors 60</p> <p>3.5.1 Fundamental Characteristics of Metal and Metal Oxide Nanostructure for the Development of a Biosensor 61</p> <p>3.5.2 Performance of Nanostructured Metal and Metal Oxide-Based Biosensors 61</p> <p>3.6 Conclusion 64</p> <p>Acknowledgment 64</p> <p>References 64</p> <p><b>4 Biomarkers and Their Role in Detection of Biomolecules </b><b>73<br /></b><i>Ayesha Taj, Abdul Rehman, and Sadia Z. Bajwa</i></p> <p>4.1 Introduction 73</p> <p>4.2 Types of Biomarkers 75</p> <p>4.2.1 Predictive Biomarker 75</p> <p>4.2.2 Prognosis Biomarker 75</p> <p>4.2.3 Pharmacodynamic Biomarker 75</p> <p>4.3 Cancer Biomarker 76</p> <p>4.3.1 Role of Biomarkers in Cancer Medicine 77</p> <p>4.3.2 Use of Biomarkers in Cancer Research 78</p> <p>4.3.2.1 Risk Assessment 79</p> <p>4.3.2.2 Screening 79</p> <p>4.3.2.3 Diagnostic Test 79</p> <p>4.3.2.4 Staging 80</p> <p>4.3.2.5 Monitoring Tests 80</p> <p>4.3.3 Types of Cancer Biomarkers 80</p> <p>4.4 Cardiac Biomarkers 80</p> <p>4.4.1 Measurement 81</p> <p>4.4.2 Types of Cardiac Biomarkers 81</p> <p>4.4.2.1 Troponin 81</p> <p>4.4.2.2 Creatine Kinase (CK) 82</p> <p>4.4.2.3 Myoglobin 82</p> <p>4.4.2.4 Lactate Dehydrogenase (LDH) 82</p> <p>4.4.2.5 C-Reactive Protein (CRP) 82</p> <p>4.5 Biomarker of Aging 83</p> <p>4.6 Alzheimer’s Biomarker 83</p> <p>4.7 HIV Biomarker 85</p> <p>4.8 Conclusion 87</p> <p>Acknowledgment 88</p> <p>References 88</p> <p><b>5 Detection of Cancer Cells by Using Biosensors </b><b>95<br /></b><i>Nuzhat Jamil and Waheed S. Khan</i></p> <p>5.1 Introduction 95</p> <p>5.2 Early Stage Detection of Cancer and Its Importance 96</p> <p>5.3 Biosensor – A Good Option for Detecting Cancers 96</p> <p>5.4 Cancers Commonly Observed in Females 97</p> <p>5.4.1 Breast Cancer Detection 97</p> <p>5.4.1.1 Electrochemical DNA Biosensor Based on Immobilized ZnO Nanowires 97</p> <p>5.4.1.2 Optical Biosensor of Breast Cancer Cells 98</p> <p>5.4.1.3 Microfluidic Plasmonic Biosensor 100</p> <p>5.4.1.4 QCM Biosensor for Sensitive and Selective Detection 100</p> <p>5.4.2 Ovarian Cancer Detection 102</p> <p>5.4.2.1 ZnO–Au-Based Electrochemical Biosensor for Ovarian Cancer 102</p> <p>5.4.2.2 Magnetic Nanoparticle–Antibody Conjugates (MNP–ABS)-Based Assay 103</p> <p>5.4.3 Cervical Cancer Detection 103</p> <p>5.4.3.1 Impedimetric Biosensor for Early Detection of Cervical Cancer 104</p> <p>5.4.3.2 Automated Cervical Cancer Detection Using Photonic Crystal-Based Biosensor 105</p> <p>5.5 Cancers Commonly Observed in Males 106</p> <p>5.5.1 Lung Cancer Detection 106</p> <p>5.5.2 Gold Nanoparticle-Based Colorimetric Biosensor 106</p> <p>5.6 Prostate Cancer Detection 107</p> <p>5.6.1 Novel Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Prostate-Specific Antigen Based on the Enhanced Catalytic Currents of Oxygen Reduction Catalyzed by Core–Shell Au@Pt Nanocrystals 107</p> <p>5.6.2 Electrochemical Biosensor to Simultaneously Detect VEGF and PSA for Early Prostate Cancer Diagnosis Based on Graphene Oxide/ssDNA/PLLA Nanoparticles 108</p> <p>5.6.3 Detection of Early Stage Prostate Cancer by Using a Simple Carbon Nanotube@Paper Biosensor 109</p> <p>5.7 Oral Cancer 110</p> <p>5.7.1 Graphene Biosensor Based on Antigen Concentration in Saliva 110</p> <p>5.8 Conclusions 111</p> <p>Acknowledgments 112</p> <p>References 112</p> <p><b>6 Biosensor Applications for Viral and Bacterial Disease Diagnosis </b><b>117<br /></b><i>Ayesha Shaheen, Rabia Arshad, Ayesha Taj, Usman Latif, and Sadia Z. Bajwa</i></p> <p>6.1 Introduction 117</p> <p>6.2 Dengue Fever Virus Detection 118</p> <p>6.2.1 Nanostructured Electrochemical Biosensor 118</p> <p>6.2.2 Plasmonic Biosensor for Early Detection of Dengue Virus 120</p> <p>6.2.3 Impedimetric Biosensor to Test Neat Serum for Dengue Virus 120</p> <p>6.3 Zika Virus Detection 122</p> <p>6.3.1 Electrochemical Biosensors for Early Stage Zika Diagnostics 122</p> <p>6.3.2 Novel Graphene-Based Biosensor for Early Detection of Zika Virus 124</p> <p>6.3.3 Smartphone-Based Diagnostic Platform for Rapid Detection of Zika Virus 126</p> <p>6.4 Yellow Fever 126</p> <p>6.4.1 Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen 127</p> <p>6.5 Hepatitis B 128</p> <p>6.5.1 Carbon Nanotube-Based Biosensor for Detection of Hepatitis B 128</p> <p>6.5.2 Gold Nanorod-Based Localized Surface Plasmon Resonance (SPR) Biosensor for Sensitive Detection of Hepatitis B Virus 129</p> <p>6.5.3 Amplified Detection of Hepatitis B Virus Using an Electrochemical DNA Biosensor on a Nanoporous Gold Platform 129</p> <p>6.6 Hepatitis C 130</p> <p>6.6.1 Aggregation of Gold Nanoparticles: A Novel Nanoparticle Biosensor Approach for the Direct Quantification of Hepatitis C 131</p> <p>6.6.2 Impedimetric Genosensor for Detection of Hepatitis C Virus (HCV1) DNA Using the Viral Probe on Methylene Blue-Doped Silica Nanoparticles 132</p> <p>6.6.3 Ultrasensitive Aptasensor Based on a GQD Nanocomposite for Detection of Hepatitis C Virus Core Antigen 133</p> <p>6.7 Typhoid Fever 134</p> <p>6.7.1 Graphene Oxide–Chitosan Nanocomposite-Based Electrochemical DNA Biosensor for Detection of Typhoid 135</p> <p>6.8 Mycobacterium tuberculosis 137</p> <p>6.8.1 Gold Nanotube Array Electrode Platform-Based Electrochemical Biosensor for Detection of <i>Mycobacterium tuberculosis </i>DNA 138</p> <p>6.8.2 Label-Free Biosensor Based on Localized Surface Plasmon Resonance for Diagnosis of Tuberculosis 138</p> <p>6.9 Conclusions 139</p> <p>Acknowledgment 140</p> <p>References 140</p> <p><b>7 Detection of HIV Virus Using Biosensor </b><b>149<br /></b><i>Haq Nawaz, Muhammad Tahir, Shumaila Anwar, Muhammad Irfan Majeed, and Nosheen Rashid</i></p> <p>7.1 Introduction 149</p> <p>7.1.1 Structure and Genomic Specifications of HIV 150</p> <p>7.1.2 Morphology 150</p> <p>7.2 Electrochemical Based Biosensors for HIV Detection 155</p> <p>7.2.1 DNA Electrochemical Biosensors for Detection of HIV 155</p> <p>7.2.1.1 Detection of HIV DNA Sequence 155</p> <p>7.2.2 Label-Free Electrochemical Biosensor for Detection of HIV 156</p> <p>7.2.3 Ultrasensitive Biosensors for HIV Gene 157</p> <p>7.2.4 Optical Biosensors for HIV Detection 158</p> <p>7.2.5 Nanostructured Optical Photonic Crystal Biosensor for HIV 159</p> <p>7.2.5.1 Virus Capture 160</p> <p>7.2.6 Surface Plasmon Resonance-Based Biosensors 160</p> <p>7.2.7 Sensitive Impedimetric DNA Biosensor for the Determination of the HIV-1 Gene 162</p> <p>7.2.8 Improved Piezoelectric Biosensor for HIV Rapid Detection of HIV 163</p> <p>7.2.8.1 Measurement Procedure 163</p> <p>7.3 Conclusions 164</p> <p>Acknowledgments 165</p> <p>References 165</p> <p><b>8 Use of Biosensors for Mycotoxins Analysis in Food Stuff </b><b>171<br /></b><i>Muhammad Rizwan Younis, Chen Wang, Muhammad Adnan Younis, and Xing-Hua Xia</i></p> <p>8.1 Introduction 171</p> <p>8.2 Types of Mycotoxins 173</p> <p>8.2.1 Aflatoxins 173</p> <p>8.2.2 Ochratoxins 174</p> <p>8.2.3 Citrinin 174</p> <p>8.2.4 Patulin 174</p> <p>8.2.5 <i>Fusarium </i>175</p> <p>8.3 Biosensors for Aflatoxin Detection 175</p> <p>8.3.1 DNA-Based Biosensor for Aflatoxins 176</p> <p>8.3.2 Electrochemical Detection Systems 179</p> <p>8.3.3 Carbon Nanotube (CNT)-Based Aflatoxin Biosensor 180</p> <p>8.3.4 QCM Biosensor for Aflatoxin 182</p> <p>8.4 Biosensors for Ochratoxins 185</p> <p>8.4.1 Horseradish Peroxidase-Screen-Printed Biosensor for the Determination of Ochratoxin 185</p> <p>8.4.2 Aptamer–DNAzyme Hairpin Biosensor for Ochratoxin 186</p> <p>8.4.3 Development of QCM-D Biosensor for Ochratoxin A 189</p> <p>8.5 Biosensors for Citrinin Determination 192</p> <p>8.5.1 Molecular Imprinted Surface Plasmon Resonance (SPR) Biosensor 192</p> <p>8.6 Biosensors for Patulin Determination 194</p> <p>8.6.1 Cerium Oxide ISFET-Based Immune Biosensor 194</p> <p>8.6.2 Conductometric Enzyme Biosensor for Patulin Determination 196</p> <p>8.7 Biosensors for Fusarium Determination 196</p> <p>8.7.1 Rapid Biosensor for the Detection of Mycotoxin in Wheat (MYCOHUNT) 198</p> <p>8.8 Conclusions 198</p> <p>Acknowledgment 199</p> <p>References 199</p> <p><b>9 Development of Biosensors for Drug Detection Applications </b><b>203<br /></b><i>Razium Ali Soomro</i></p> <p>9.1 Introduction 203</p> <p>9.2 What is the Need of Biosensors for Drug Detection? 205</p> <p>9.3 Biosensors for the Detection of Antibiotics 206</p> <p>9.3.1 Electrochemical Biosensor for Antibiotics 207</p> <p>9.3.2 Voltammetric Biosensor for Antibiotics 207</p> <p>9.3.3 Photoelectrochemical Biosensors for Antibiotics 209</p> <p>9.3.4 Amperometric Biosensor for Antibiotics 211</p> <p>9.4 Biosensors for the Detection of Therapeutic Drugs 212</p> <p>9.5 Biosensors for Neurotransmitter 214</p> <p>9.6 Conclusion and Perspective 219</p> <p>Acknowledgment 219</p> <p>References 220</p> <p><b>10 Detecting the Presence of Illicit Drugs Using Biosensors </b><b>223<br /></b><i>Muhammad Irfan Majeed, Haq Nawaz, and Falaq Naz Arshad</i></p> <p>10.1 Introduction 223</p> <p>10.1.1 Classification of Illicit Drugs 224</p> <p>10.1.2 Drug’s Effect on Brain and Body 225</p> <p>10.1.3 Signs of Illicit Drug Addiction 225</p> <p>10.1.4 Biosensors for Illicit Drugs 226</p> <p>10.1.5 Nanomaterials for Biosensors 227</p> <p>10.1.6 Molecular Receptors for the Nanobiosensors 229</p> <p>10.2 Cocaine Detection 230</p> <p>10.2.1 Quantum Dot-Based Optical Biosensors for Cocaine Detection 230</p> <p>10.2.2 Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection 231</p> <p>10.2.3 Colorimetric Cocaine Aptasensors 232</p> <p>10.2.4 Electrochemical Based Cocaine Aptasensors 234</p> <p>10.3 Methamphetamine Detection 234</p> <p>10.3.1 Nonaggregated Au@Ag Core–Shell Nanoparticle Based Colorimetric Biosensor for Methamphetamine Detection 235</p> <p>10.4 Chlorpromazine Detection 237</p> <p>10.4.1 DNA Intercalation-Based Amperometric Biosensor for Chlorpromazine Detection 238</p> <p>10.5 Codeine Detection 239</p> <p>10.6 Morphine Detection 241</p> <p>10.7 Alcohol Detection 242</p> <p>10.8 Conclusion 244</p> <p>Acknowledgments 245</p> <p>References 245</p> <p><b>11 Biosensors for Determination of Pesticides and Their Residues </b><b>255<br /></b><i>Asma Rehman, Lutfur Rahman, Bushra Tehseen, and Hafiza F. Khalid</i></p> <p>11.1 Introduction 255</p> <p>11.2 Types of Pesticides and Their Benefits 256</p> <p>11.2.1 Insecticides 256</p> <p>11.2.2 Herbicides 257</p> <p>11.2.3 Fungicides 257</p> <p>11.2.4 Benefits of Pesticides 258</p> <p>11.2.5 Beneficiaries of Pesticides 258</p> <p>11.2.6 Controlling Agricultural Pests and Vectors of Plant Disease 259</p> <p>11.2.7 Benefits of Pesticides to Prevent Organisms that Harm Other Activities or Damage Structures 260</p> <p>11.3 Detrimental Effects: Health and Environmental Effects 261</p> <p>11.3.1 Impact of Pesticides on Human Health: Topical or Systemic 262</p> <p>11.3.2 Short-Term Effects of Pesticides 262</p> <p>11.3.3 Long-Term Effects of Pesticides 263</p> <p>11.3.4 Effects of Pesticides on Pregnant Women 263</p> <p>11.3.5 Pesticides and Children 263</p> <p>11.3.6 Effects of Pesticides on the Environment 264</p> <p>11.3.7 Safe Use of Pesticides 264</p> <p>11.4 AuNP/MPS/Au Electrode Sensing Layer-Based Electrochemical Biosensor for Pesticide Monitoring 265</p> <p>11.5 Citrate-Stabilized AuNP-Based Optical Biosensor for Rapid Pesticide Residue Detection of Terbuthylazine and Dimethoate 266</p> <p>11.6 Piezoelectric Biosensor for Rapid Detection of Pesticide Residue 267</p> <p>11.7 Amperometric Acetylcholinesterase Biosensor Based on Gold Nanorods for Detection of Organophosphate Pesticides 272</p> <p>11.8 Conclusions 275</p> <p>Acknowledgment 275</p> <p>References 275</p> <p><b>12 Detection of Avian Influenza Virus </b><b>289<br /></b><i>Waheed S. Khan, and Muhammad Zubair Iqbal</i></p> <p>12.1 Introduction 289</p> <p>12.2 Surface-Enhanced Raman Spectroscopy (SERS)-Based Nanosensor 290</p> <p>12.2.1 Design of Magnetic Immunoassay Based on SERS Strategy 291</p> <p>12.3 Carbon Nanotube-Based Chemiresistive Biosensors for Label-Free Detection of DNA Sequences 292</p> <p>12.4 Influenza Virus Detection Using Electrochemical Biosensors 297</p> <p>12.5 Aptamer-Based Biosensors 303</p> <p>12.6 Conclusions 304</p> <p>Acknowledgments 305</p> <p>References 306</p> <p><b>13 Biosensors for Swine Influenza Viruses </b><b>311<br /></b><i>Madiha Saeed and Aiguo Wu</i></p> <p>13.1 Introduction 311</p> <p>13.2 Diagnostic Methods for Swine Influenza Virus and Their Limitations 312</p> <p>13.3 Nanomaterial-Based Sensors 313</p> <p>13.3.1 Applications of Carbon-Based Nanomaterials 313</p> <p>13.3.2 Gold Nanoparticle-Based Biosensing 315</p> <p>13.3.3 Gold Nanoparticle-Based Localized Surface Plasmon Resonance Sensors 315</p> <p>13.3.4 Magnetic Nanoparticle-Based Biosensing 319</p> <p>13.3.5 Others 321</p> <p>13.4 Conclusion 321</p> <p>Acknowledgments 322</p> <p>References 322</p> <p><b>14 Biosensors for Detection of Marine Toxins </b><b>329<br /></b><i>Khizra Bano, Waheed S. Khan, Chuanbao Cao, Rao F.H. Khan, and Thomas J. Webster</i></p> <p>14.1 Introduction 329</p> <p>14.2 Algal Blooms and Marine Toxins 330</p> <p>14.3 Classification of Marine Toxins, also Known as Biotoxins 330</p> <p>14.4 Harmful Effect of Marine Toxins on Human Health 335</p> <p>14.5 Biosensing of Marine Toxins 337</p> <p>14.5.1 SPR-Based Biosensors for Marine Toxins with Special Reference to Saxitoxin Sensing 338</p> <p>14.5.2 Detection of Marine Biotoxin in Shellfish 344</p> <p>14.5.3 Smartphone-Based Portable Detection System for Marine Toxins 345</p> <p>14.5.4 Superparamagnetic Nanobead-Based Immunochromatographic Assay for Detection of Toxic Marine Algae 347</p> <p>14.5.5 Gold Nanorod Aggregation-Based Optical Biosensor for Rapid Endotoxin Detection 349</p> <p>14.6 Conclusion 350</p> <p>Acknowledgments 351</p> <p>References 351</p> <p><b>15 Smartphone-Based Biosensors </b><b>357<br /></b><i>Muhammad Rizwan Younis, Chen Wang, Muhammad Adnan Younis, and Xing-Hua Xia</i></p> <p>15.1 Introduction 357</p> <p>15.2 Smartphone-Based Devices andTheir Applications 360</p> <p>15.3 Rapid GMR Biosensor Platform with Smartphone Interface 363</p> <p>15.4 Smartphone-Based Electrochemical Biosensor for Portable Detection of Clenbuterol 367</p> <p>15.5 Biosensing of Metal Ions by a Novel 3D-Printable Smartphone 369</p> <p>15.6 Ambient Light-Based Optical Biosensing Platform with Smartphone-Embedded Illumination Sensor 372</p> <p>15.7 Smartphone Optical Biosensor Point-of-Care Diagnostics 374</p> <p>15.8 Monitoring of Cardiovascular Diseases at the Point of Care by Smartphone 377</p> <p>15.9 Smartphone-Based Sensing System Using ZnO- and Graphene-Modified Electrodes for VOCs Detection 379</p> <p>15.10 Use of Smartphone Technology in Cardiology 381</p> <p>15.11 Smartphone-Based Enzymatic Biosensor for Oral Fluid l-Lactate Detection 383</p> <p>15.12 Conclusions 385</p> <p>Acknowledgments 385</p> <p>References 385</p> <p>Index 389</p>
<p><b><i>Aiguo Wu,</i></b> <i>Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS)</i> <p><b><i>Waheed S. Khan,</i></b> <i>National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.</i>
<p><b>Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read</b> <p>Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. <p><i>Nanobiosensors - From Design to Applications</i> covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. <i>Nanobiosensors - From Design to Applications</i> will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. <ul> <li>Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins</li> <li>Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research</li> <li>Goes to a wide scientific and industry audience</li> </ul> <p><i>Nanobiosensors - From Design to Applications</i> is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €