Details

Nano-Technological Intervention in Agricultural Productivity


Nano-Technological Intervention in Agricultural Productivity


1. Aufl.

von: Javid A. Parray, Mohammad Yaseen Mir, Nowsheen Shameem

141,30 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.07.2021
ISBN/EAN: 9781119714866
Sprache: englisch
Anzahl Seiten: 208

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides detailed information about the use of nanotechnology in remediating waste and pollution in agriculture </b></p> <p><i>Nano-Technological Intervention in Agricultural Productivity</i> explores sustainable, eco-friendly technologies for remediating wastes and contaminated areas in both water and land ecosystems. Focusing on nano-technological innovations that use microbes and microbial agents to improve the quality and pollutant discharge of contaminated sites, this comprehensive volume also discusses molecular approaches for the characterization of nanoparticles, the biosynthetic pathways of microbes, gene and protein expression studies for bio-deterioration techniques, and more. </p> <p>Organized into nine chapters, the book opens with a thorough overview of the functions, classification, properties, synthesis, and applications of nanoparticles. Following a discussion of the environmental and agricultural implications of nanotechnology, the authors examine the current role and future prospects of nanotechnology in managing plant diseases, improving agri-food production, and increasing agricultural productivity. Subsequent chapters cover lignin nanoparticles, various applications of nanotechnology in agriculture, and nano-based advances in plant and microbial science. Offering an up-to-date account of the role of nanotechnologies in agricultural bioremediation, this book: </p> <ul> <li>Explores biotechnological advances in the development of sophisticated green technologies for waste minimization and waste control </li> <li>Emphasizes the use of microbes for degradation and removal of various xenobiotic substances </li> <li>Discusses bioremediation approaches in relation to the impact of increased urbanization and industrialization on the environment </li> <li>Covers a variety of applications of nanotechnology in agriculture, including nano-fertilizers, nano-biosensors, nano-pesticides, and nanoparticle protection in plants </li> </ul> <p><i>Nano-Technological Intervention in Agricultural Productivity</i> is a valuable resource for students in plant biotechnology and agricultural science and engineering, as well as an important reference for researchers in plant biotechnology and agricultural sciences, particularly those with interest in the use of nanomaterials for pollution remediation and sustainable development. </p>
<p><b>About the Authors </b><i>xi</i></p> <p><b>About the Book </b><i>xiii</i></p> <p><b>1 Nanotechnology and Nanoparticles </b><i>1</i></p> <p>1.1 Nanoparticles and Their Functions <i>1</i></p> <p>1.2 Classification of NPs <i>2</i></p> <p>1.2.1 Carbon-Based NPs <i>2</i></p> <p>1.2.2 Metal Nanoparticles <i>2</i></p> <p>1.2.3 Ceramic NPs <i>3</i></p> <p>1.2.4 Semiconductor NPs <i>3</i></p> <p>1.2.5 Polymeric NPs <i>3</i></p> <p>1.2.6 NPs Based on Lipids <i>4</i></p> <p>1.3 Synthesis of Nanoparticles <i>4</i></p> <p>1.3.1 Top-Down Synthesis <i>4</i></p> <p>1.3.2 Bottom-Up Synthesis <i>5</i></p> <p>1.4 NPs and Characterization <i>6</i></p> <p>1.4.1 Morphological Characterization <i>6</i></p> <p>1.4.1.1 SEM Technique <i>6</i></p> <p>1.4.1.2 TEM Technique <i>6</i></p> <p>1.4.2 Structural Characteristics <i>7</i></p> <p>1.4.2.1 XRD <i>7</i></p> <p>1.4.2.2 Energy-Dispersive X-ray (EDX) <i>7</i></p> <p>1.4.2.3 XPS <i>7</i></p> <p>1.4.2.4 FT-IR and Raman Spectroscopies <i>8</i></p> <p>1.4.3 Particle Size and Surface Area Characterization <i>8</i></p> <p>1.4.4 Optical Characterizations <i>8</i></p> <p>1.5 Physicochemical Properties of NPs <i>9</i></p> <p>1.5.1 Mechanical and Optical Properties <i>9</i></p> <p>1.5.2 Magnetic Properties <i>9</i></p> <p>1.5.3 Mechanical Properties <i>10</i></p> <p>1.5.4 Thermal Properties <i>10</i></p> <p>1.6 Functions of NPs <i>10</i></p> <p>1.6.1 Drugs and Medications <i>11</i></p> <p>1.6.2 Materials and Manufacturing <i>11</i></p> <p>1.6.3 Environment <i>12</i></p> <p>1.6.4 Electronics <i>12</i></p> <p>1.6.5 Energy Harvesting <i>12</i></p> <p>References <i>13</i></p> <p><b>2 Implications of Nanotechnology and Environment </b><i>21</i></p> <p>2.1 Ecotoxicological Implications of Nanoparticles <i>21</i></p> <p>2.1.1 Ecotoxicity of Fullerenes <i>23</i></p> <p>2.1.2 Ecotoxicity of Carbon Nanotubes <i>23</i></p> <p>2.1.3 Ecotoxicity of Metal Nanoparticles <i>23</i></p> <p>2.1.4 Ecotoxicity of Nanocomposites <i>24</i></p> <p>2.1.5 Ecotoxicity of Oxide Nanoparticles <i>25</i></p> <p>2.2 Nanotechnology and Agriculture <i>26</i></p> <p>2.3 Risk Assessment Factors and Modulation of Nanomaterials <i>27</i></p> <p>References <i>30</i></p> <p><b>3 Nanotechnology and Disease Management </b><i>37</i></p> <p>3.1 Recent Advancements in Plant Nanotechnology <i>37</i></p> <p>3.1.1 Cerium Oxide (CeO2) NPs <i>38</i></p> <p>3.1.2 Silver NPs <i>38</i></p> <p>3.1.3 Titanium Dioxide (ToO2) NPs <i>39</i></p> <p>3.1.4 Zinc Oxide (ZnO) NPs <i>41</i></p> <p>3.1.5 Cupric Oxide (CuO) NPs <i>41</i></p> <p>3.1.6 Gold NPs (GNPs) <i>42</i></p> <p>3.1.7 Carbon Nanotubes <i>42</i></p> <p>3.1.8 Nickel Oxide NPs <i>43</i></p> <p>3.2 Nanotechnology: Role in Plant-Parasitic Control <i>43</i></p> <p>3.2.1 Nanocapsules: Liposomes and Polymers <i>44</i></p> <p>3.2.1.1 Potential Uses in Controlling ParasiticWeeds <i>44</i></p> <p>3.3 Abiotic Stress-Tolerant Transgenic Crops and Nanotechnology <i>45</i></p> <p>3.3.1 Nanotechnology in Gene Transfer Experiments <i>45</i></p> <p>3.4 Plant Pathogens and Nanoparticle Biosynthesis <i>46</i></p> <p>3.4.1 Bacteria-Mediated Biosynthesis <i>47</i></p> <p>3.4.2 Fungal Mediated Biosynthesis <i>48</i></p> <p>3.5 Nanomaterial and Plant Protection Against Pests and Pathogens <i>49</i></p> <p>3.6 Future Perspectives <i>51</i></p> <p>References <i>51</i></p> <p><b>4 Nanotechnology in Agri-Food Production </b><i>59</i></p> <p>4.1 Nanomaterials <i>59</i></p> <p>4.2 Nanotechnology and Food Systems: Food Packing <i>60</i></p> <p>4.3 Nano-Nutraceuticals <i>61</i></p> <p>4.3.1 Issues with Nano-Nutraceuticals <i>62</i></p> <p>4.4 Nanotechnological Advancement in Antimicrobial Peptides (AMPs) <i>63</i></p> <p>4.4.1 Passive Nano-Delivery Systems <i>63</i></p> <p>4.4.1.1 Cyclosporin A <i>63</i></p> <p>4.4.1.2 Nisin <i>64</i></p> <p>4.4.1.3 Polymyxin <i>64</i></p> <p>4.4.2 Antimicrobial Peptides in Targeted Nano-Delivery Systems <i>64</i></p> <p>4.5 Assessment of Nanotechnology for Enhanced Food Security <i>65</i></p> <p>4.5.1 Framework for Assessing the Potential Role of Nanotechnology in Food <i>65</i></p> <p>4.5.2 Assessment of Nanotechnology Potential Through Literature Survey <i>65</i></p> <p>4.6 Future Perspectives <i>66</i></p> <p>References <i>66</i></p> <p><b>5 Nanotechnology: Improvement in Agricultural Productivity </b><i>73</i></p> <p>5.1 Nanoparticle Biosynthesis and Use in Agriculture <i>73</i></p> <p>5.1.1 Silver Nanoparticles <i>73</i></p> <p>5.1.2 Zinc Oxide Nanoparticles <i>74</i></p> <p>5.1.3 Titanium Dioxide (TiO2) Nanoparticles <i>75</i></p> <p>5.2 Nanorobots <i>76</i></p> <p>5.2.1 Environment Monitoring <i>77</i></p> <p>5.2.2 Nanorobot Sensors <i>79</i></p> <p>5.2.3 Pollutant and Chemical Detection <i>79</i></p> <p>5.2.4 Metal Identification <i>80</i></p> <p>5.2.5 Nanorobot Data Transmission <i>81</i></p> <p>5.2.6 Nanorobot System on Nanotechnology Chip <i>82</i></p> <p>5.3 Natural Nanostructures in Food <i>82</i></p> <p>5.3.1 Protein-Based Nanostructures <i>83</i></p> <p>5.3.1.1 β-Lactoglobulin <i>84</i></p> <p>5.3.1.2 Serum Albumin <i>85</i></p> <p>5.3.1.3 α-Lactalbumin and Lysozyme (Lys) <i>85</i></p> <p>5.3.1.4 Ovalbumin and Avidin <i>86</i></p> <p>5.3.1.5 Transferrins <i>86</i></p> <p>5.3.1.6 Osteopontin and Osteopontin Lactoperoxidase (OPN) <i>87</i></p> <p>5.3.2 Formation of Natural Nanostructure Subsequently to Molecular</p> <p>Interaction/Complexation <i>88</i></p> <p>5.3.2.1 Lipid-Based Nanostructures <i>89</i></p> <p>References <i>90</i></p> <p><b>6 Lignin Nanoparticles: Synthesis and Application </b><i>97</i></p> <p>6.1 Overview of Lignin Nanoparticles <i>97</i></p> <p>6.2 Lignin Nanoparticle Synthesis (LNPs) <i>98</i></p> <p>6.2.1 Polymerization <i>98</i></p> <p>6.2.2 Acid Precipitation <i>98</i></p> <p>6.2.3 Solvent Exchange Method <i>99</i></p> <p>6.2.4 Ultrasonication <i>100</i></p> <p>6.2.5 Biological Method <i>100</i></p> <p>6.3 Application of Lignin Nanoparticles (LNPs) <i>101</i></p> <p>6.3.1 Antibacterial Activity <i>101</i></p> <p>6.3.2 Antioxidant Activity <i>102</i></p> <p>6.3.3 UV Absorbents <i>102</i></p> <p>6.3.4 Hybrid Nanocomposites <i>103</i></p> <p>6.3.5 Drug Delivery System <i>103</i></p> <p>6.3.6 Adsorbents to Remove Dyes <i>104</i></p> <p>6.3.7 As a Capacitor <i>104</i></p> <p>6.3.8 As a Nano-trap <i>105</i></p> <p>References <i>105</i></p> <p><b>7 Contemporary Application of Nanotechnology in Agriculture </b><i>109</i></p> <p>7.1 Introduction <i>109</i></p> <p>7.2 Nanofertilizers <i>110</i></p> <p>7.3 Nanocomposites <i>111</i></p> <p>7.4 Nanobiosensors <i>112</i></p> <p>7.4.1 Nanosensors in Agriculture <i>113</i></p> <p>7.4.2 Monitoring Soil Conditions and Plant Growth Regulators <i>113</i></p> <p>7.4.3 Plant Pathogen Recognition <i>114</i></p> <p>7.4.4 Detection of Pesticide Residues <i>114</i></p> <p>7.5 Nanopesticides <i>115</i></p> <p>7.6 Natural Nanoparticles: Environmental and Health Implications <i>118</i></p> <p>7.6.1 Water Quality <i>118</i></p> <p>7.6.2 Interactions with Contaminants and Other Organisms <i>119</i></p> <p>7.6.3 Environmental Risks and Biogeochemistry of NNPs <i>120</i></p> <p>7.6.4 Environmental Issues <i>120</i></p> <p>7.7 Future Perspective <i>121</i></p> <p>References <i>121</i></p> <p><b>8 Nanotechnology: Advances in Plant and Microbial Science </b><i>131</i></p> <p>8.1 Engineered Nanomaterials and Soil Remediation <i>131</i></p> <p>8.1.1 ENMs: Role in Soil Remediation <i>132</i></p> <p>8.1.1.1 Immobilization <i>132</i></p> <p>8.1.1.2 Photocatalytic Degradation <i>134</i></p> <p>8.2 Fate and Interactions of Nanomaterials in Soil <i>135</i></p> <p>8.2.1 Nanoparticles and Plants <i>136</i></p> <p>8.2.2 Suppressive Effects on Plants <i>136</i></p> <p>8.2.3 Promontory Plant Effects <i>136</i></p> <p>8.2.4 Nanoparticles and Impacts on Soil Microbes <i>138</i></p> <p>8.2.5 Zinc and Sulfur Nanoparticles <i>138</i></p> <p>8.2.6 Copper and Silica Nanoparticles <i>139</i></p> <p>8.3 Nanomaterials and Metal Components: Accumulation and Translocation</p> <p>Within Plants <i>139</i></p> <p>8.3.1 NPS: Uptake and Translocation in Plants <i>140</i></p> <p>8.3.2 NPS: Root Uptake and Translocation <i>141</i></p> <p>8.3.3 Assimilated Root Uptake and Translocation Pathways of Nanoparticles <i>142</i></p> <p>8.3.4 NPS: Transformation in the Rhizosphere <i>144</i></p> <p>8.4 Biotransformation of ENPs in Plants <i>145</i></p> <p>8.5 Effect of Nanomaterials on Plants <i>146</i></p> <p>8.5.1 Positive Effects <i>146</i></p> <p>8.5.2 Toxicity <i>147</i></p> <p>References <i>148</i></p> <p><b>9 Food Application and Processing: Nanotechniques and Bioactive</b></p> <p><b>Delivery Systems </b><i>161</i></p> <p>9.1 Introduction <i>161</i></p> <p>9.2 Phytochemicals and Nanoparticles <i>164</i></p> <p>9.3 Bioactive Delivery Systems <i>167</i></p> <p>9.3.1 Nanotechnology of Natural Products and Drug Delivery <i>169</i></p> <p>9.4 Bioactive Delivery Systems <i>173</i></p> <p>9.4.1 Protein-Based Nanoscale Delivery Systems <i>173</i></p> <p>9.4.2 Polysaccharide-Based Nanoscale Delivery Systems <i>175</i></p> <p>9.4.3 Complex or Hybrid Nanoscale Delivery Systems <i>177</i></p> <p>9.5 Toxicity of Biodegradable Nanoparticles <i>180</i></p> <p>9.6 Future Perspectives <i>181</i></p> <p>References <i>182</i></p> <p><b>Index </b><i>197</i></p> <p> </p> <p> </p>
<p><b>Javid A. Parray,</b> Assistant Professor, Higher Education Department, Government Degree College Eidgah, Srinagar, India. <p><b>Mohammad Yaseen Mir,</b> Department of School Education, University of Kashmir, Srinagar, India. <p><b>Nowsheen Shameem,</b> Assistant Professor, Department of Environmental Science, Cluster University Srinagar, Jammu and Kashmir, India.
<p><b>Provides detailed information about the use of nanotechnology in remediating waste and pollution in agriculture</b> <p><i>Nano-Technological Intervention in Agricultural Productivity</i> explores sustainable, eco-friendly technologies for remediating wastes and contaminated areas in both water and land ecosystems. Focusing on nano-technological innovations that use microbes and microbial agents to improve the quality and pollutant discharge of contaminated sites, this comprehensive volume also discusses molecular approaches for the characterization of nanoparticles, the biosynthetic pathways of microbes, gene and protein expression studies for bio-deterioration techniques, and more. <p>Organized into nine chapters, the book opens with a thorough overview of the functions, classification, properties, synthesis, and applications of nanoparticles. Following a discussion of the environmental and agricultural implications of nanotechnology, the authors examine the current role and future prospects of nanotechnology in managing plant diseases, improving agri-food production, and increasing agricultural productivity. Subsequent chapters cover lignin nanoparticles, various applications of nanotechnology in agriculture, and nano-based advances in plant and microbial science. Offering an up-to-date account of the role of nanotechnologies in agricultural bioremediation, this book: <ul><li>Explores biotechnological advances in the development of sophisticated green technologies for waste minimization and waste control</li> <li>Emphasizes the use of microbes for degradation and removal of various xenobiotic substances</li> <li>Discusses bioremediation approaches in relation to the impact of increased urbanization and industrialization on the environment</li> <li>Covers a variety of applications of nanotechnology in agriculture, including nano-fertilizers, nano-biosensors, nano-pesticides, and nanoparticle protection in plants</li></ul> <p><i>Nano-Technological Intervention in Agricultural Productivity</i> is a valuable resource for students in plant biotechnology and agricultural science and engineering, as well as an important reference for researchers in plant biotechnology and agricultural sciences, particularly those with interest in the use of nanomaterials for pollution remediation and sustainable development.

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
147,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
220,99 €