Details

Nano- and Microencapsulation for Foods


Nano- and Microencapsulation for Foods


1. Aufl.

von: Hae-Soo Kwak

151,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 02.04.2014
ISBN/EAN: 9781118292297
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Today, nano- and microencapsulation are increasingly being utilized in the pharmaceutical, textile, agricultural and food industries. Microencapsulation is a process in which tiny particles or droplets of a food are surrounded by a coating to give small capsules. These capsules can be imagined as tiny uniform spheres, in which the particles at the core are protected from outside elements by the protective coating. For example, vitamins can be encapsulated to protect them from the deterioration they would undergo if they were exposed to oxygen. </p> <p>This book highlights the principles, applications, toxicity and regulation of nano- and microencapsulated foods.</p> <p>Section I describes the theories and concepts of nano- and microencapsulation for foods adapted from pharmaceutical areas, rationales and new strategies of encapsulation, and protection and controlled release of food ingredients.</p> <p>Section II looks closely at the nano- and microencapsulation of food ingredients, such as vitamins, minerals, phytochemical, lipid, probiotics and flavors. This section provides a variety of references for functional food ingredients with various technologies of nano particles and microencapsulation. This section will be helpful to food processors and will deal with food ingredients for making newly developed functional food products.</p> <p>Section III covers the application of encapsulated ingredients to various foods, such as milk and dairy products, beverages, bakery and confectionery products, and related food packaging materials.</p> <p>Section IV touches on other related issues in nano- and microencapsulation, such as bioavailability, bioactivity, potential toxicity and regulation. </p>
List of Contributors xiii <p>Preface xvii</p> <p><b>1 Overview of Nano- and Microencapsulation for Foods 1</b><br /> <i>Hae-Soo Kwak</i></p> <p>1.1 Introduction 1</p> <p>1.2 Nano- or microencapsulation as a rich source of delivery of functional components 3</p> <p>1.3 Wall materials used for encapsulation 3</p> <p>1.4 Techniques used for the production of nano- or microencapsulation of foods 4</p> <p>1.5 Characterization of nano- or microencapsulated functional particles 5</p> <p>1.6 Fortification of foods through nano- or microcapsules 6</p> <p>1.7 Nano- or microencapsulation technologies: industrial perspectives and applications in the food market 6</p> <p>1.8 Overview of the book 8</p> <p>Acknowledgments 12</p> <p>References 12</p> <p><b>Part I Concepts and rationales of nano- and microencapsulation for foods 15</b></p> <p><b>2 Theories and Concepts of Nano Materials, Nano- and microencapsulation 17</b><br /> <i>Jingyuan Wen, Guanyu Chen, and Raid G. Alany</i></p> <p>2.1 Introduction 17</p> <p>2.2 Materials used for nanoparticles, nano- and microencapsulation 19</p> <p>2.2.1 Polymers 19</p> <p>2.3 Nano- and microencapsulation techniques 20</p> <p>2.3.1 Chemical methods 20</p> <p>2.3.2 Physico-chemical methods 23</p> <p>2.3.3 Other methods 25</p> <p>2.3.4 Factors influencing optimization 28</p> <p>2.4 Pharmaceutical and nutraceutical applications 30</p> <p>2.4.1 Various delivery routes for nano- and microencapsulation systems 30</p> <p>2.5 Food ingredients and nutraceutical applications 35</p> <p>2.5.1 Background and definitions 35</p> <p>2.5.2 Nanomaterials, nano- and microencapsulation in nutraceuticals 36</p> <p>2.6 Conclusion 37</p> <p>References 38</p> <p><b>3 Rationales of Nano- and Microencapsulation for Food Ingredients 43</b><br /> <i>Sundaram Gunasekaran and Sanghoon Ko</i></p> <p>3.1 Introduction 43</p> <p>3.2 Factors affecting the quality loss of food ingredients 45</p> <p>3.2.1 Oxygen 45</p> <p>3.2.2 Light 47</p> <p>3.2.3 Temperature 48</p> <p>3.2.4 Adverse interaction 49</p> <p>3.2.5 Taste masking 50</p> <p>3.3 Case studies of food ingredient protection through nano- and microencapsulation 50</p> <p>3.3.1 Vitamins 51</p> <p>3.3.2 Enzymes 52</p> <p>3.3.3 Minerals 53</p> <p>3.3.4 Phytochemicals 54</p> <p>3.3.5 Lipids 55</p> <p>3.3.6 Probiotics 55</p> <p>3.3.7 Flavors 56</p> <p>3.4 Conclusion 57</p> <p>References 58</p> <p><b>4 Methodologies Used for the Characterization of Nano- and Microcapsules 65</b><br /> <i>Minh-Hiep Nguyen, Nurul Fadhilah Kamalul Aripin, Xi G. Chen, and Hyun-Jin Park</i></p> <p>4.1 Introduction 65</p> <p>4.2 Methodologies used for the characterization of nano- and microcapsules 67</p> <p>4.2.1 Particle size and particle size distribution 67</p> <p>4.2.2 Zeta potential measurement 75</p> <p>4.2.3 Morphology 77</p> <p>4.2.4 Membrane flexibility 80</p> <p>4.2.5 Stability 82</p> <p>4.2.6 Encapsulation efficiency 83</p> <p>4.3 Conclusion 88</p> <p>Acknowledgements 88</p> <p>References 88</p> <p><b>5 Advanced Approaches of Nano- and Microencapsulation for Food Ingredients 95</b><br /> <i>Mi-Jung Choi and Hae-Soo Kwak</i></p> <p>5.1 Introduction 95</p> <p>5.2 Nanoencapsulation based on the microencapsulation technology 96</p> <p>5.3 Classification of the encapsulation system 97</p> <p>5.3.1 Nanoparticle or microparticle 97</p> <p>5.3.2 Structural encapsulation systems 100</p> <p>5.4 Preparation methods for the encapsulation system 106</p> <p>5.4.1 Emulsification 106</p> <p>5.4.2 Precipitation 107</p> <p>5.4.3 Desolvation 108</p> <p>5.4.4 Ionic gelation 109</p> <p>5.5 Application of the encapsulation system in food ingredients 109</p> <p>5.6 Conclusion 110</p> <p>References 111</p> <p><b>Part II Nano- and microencapsulations of food ingredients 117</b></p> <p><b>6 Nano- and Microencapsulation of Phytochemicals 119</b><br /> <i>Sung Je Lee and Marie Wong</i></p> <p>6.1 Introduction 119</p> <p>6.2 Classification of phytochemicals 120</p> <p>6.2.1 Flavonoids 120</p> <p>6.2.2 Carotenoids 124</p> <p>6.2.3 Betalains 126</p> <p>6.2.4 Phytosterols 127</p> <p>6.2.5 Organosulfurs and glucosinolates 128</p> <p>6.3 Stability and solubility of phytochemicals 129</p> <p>6.4 Microencapsulation of phytochemicals 130</p> <p>6.4.1 Spray-drying 131</p> <p>6.4.2 Freeze-drying 135</p> <p>6.4.3 Liposomes 136</p> <p>6.4.4 Coacervation 138</p> <p>6.4.5 Molecular inclusion complexes 141</p> <p>6.5 Nanoencapsulation 146</p> <p>6.5.1 Nanoemulsions 147</p> <p>6.5.2 Nanoparticles 148</p> <p>6.5.3 Solid lipid nanoparticles (SLN) 150</p> <p>6.5.4 Nanoparticles through supercritical anti-solvent precipitation 152</p> <p>6.6 Conclusion 153</p> <p>References 153</p> <p><b>7 Microencapsulation for Gastrointestinal Delivery of Probiotic Bacteria 167</b><br /> <i>Kasipathy Kailasapathy</i></p> <p>7.1 Introduction 167</p> <p>7.2 The gastrointestinal (GI) tract 169</p> <p>7.2.1 Microbiota of the adult GI tract 169</p> <p>7.2.2 Characteristics of the GI tract for probiotic delivery 170</p> <p>7.3 Encapsulation technologies for probiotics 173</p> <p>7.4 Techniques for probiotic encapsulation 175</p> <p>7.4.1 Microencapsulation (ME) in gel particles using polymers 175</p> <p>7.4.2 The extrusion technique 175</p> <p>7.4.3 The emulsion technique 177</p> <p>7.4.4 Spray-drying, spray-coating and spray-chilling technologies 179</p> <p>7.4.5 Microencapsulation technologies for nutraceuticals incorporating probiotics 182</p> <p>7.5 Controlled release of probiotic bacteria 182</p> <p>7.6 Potential applications of encapsulated probiotics 183</p> <p>7.6.1 Yoghurt 184</p> <p>7.6.2 Cheese 185</p> <p>7.6.3 Frozen desserts 186</p> <p>7.6.4 Unfermented milks 186</p> <p>7.6.5 Powdered formulations 187</p> <p>7.6.6 Meat products 187</p> <p>7.6.7 Plant-based (vegetarian) probiotic products 188</p> <p>7.7 Future trends and marketing perspectives 189</p> <p>References 191</p> <p><b>8 Nano-Structured Minerals and Trace Elements for Food and Nutrition Applications 199</b><br /> <i>Florentine M. Hilty and Michael B. Zimmermann</i></p> <p>8.1 Introduction 199</p> <p>8.2 Special characteristics of nanoparticles 200</p> <p>8.3 Nano-structured entities in natural foods 202</p> <p>8.4 Nano-structured minerals in nutritional applications 202</p> <p>8.4.1 Iron 202</p> <p>8.4.2 Zinc 207</p> <p>8.4.3 Calcium 209</p> <p>8.4.4 Magnesium 210</p> <p>8.4.5 Selenium 211</p> <p>8.4.6 Copper 211</p> <p>8.5 Uptake of nano-structured minerals 212</p> <p>8.6 Conclusion 213</p> <p>References 214</p> <p><b>9 Nano- and Microencapsulation of Vitamins 223</b><br /> <i>Ashok R. Patel and Bhesh Bhandari</i></p> <p>9.1 Introduction 223</p> <p>9.2 Vitamins for food and nutraceutical applications 224</p> <p>9.2.1 Vitamins: nutritional requirement and biological functions 224</p> <p>9.2.2 Vitamins: formulation challenges and stability issues 224</p> <p>9.3 Colloidal encapsulation (nano and micro) in foods: principles of use 227</p> <p>9.3.1 Solid-in-liquid dispersions 229</p> <p>9.3.2 Liquid-in-liquid dispersions 232</p> <p>9.3.3 Dispersions of self-assembled colloids 234</p> <p>9.3.4 Encapsulation in dry matrices 238</p> <p>9.3.5 Molecular encapsulation of vitamins in cyclodextrins 239</p> <p>9.4 Conclusion and future trends 240</p> <p>References 241</p> <p><b>10 Nano- and Microencapsulation of Flavor in Food Systems 249</b><br /> <i>Kyuya Nakagawa</i></p> <p>10.1 Introduction 249</p> <p>10.2 Flavor stabilization in food nano- and microstructures 250</p> <p>10.2.1 Application of encapsulated flavors 250</p> <p>10.2.2 Interactions between flavor compounds and carrier matrices 251</p> <p>10.2.3 Flavor retention in colloidal systems 251</p> <p>10.2.4 Flavor retention in food gel 252</p> <p>10.2.5 Flavor inclusion in starch nanostructure 253</p> <p>10.3 Flavor retention and release in an encapsulated system 254</p> <p>10.3.1 Mass transfer at the liquid–gas interface 254</p> <p>10.3.2 Mass transfer at a solid–gas interface 258</p> <p>10.4 Nano- and microstructure processing 259</p> <p>10.4.1 Spray-drying 260</p> <p>10.4.2 Freeze-drying 262</p> <p>10.4.3 Complex coacervation 264</p> <p>10.5 Conclusion 266</p> <p>Acknowledgements 267</p> <p>References 267</p> <p><b>11 Application of Nanomaterials, Nano- and Microencapsulation to Milk and Dairy Products 273</b><br /> <i>Hae-Soo Kwak, Mohammad Al Mijan, and Palanivel Ganesan</i></p> <p>11.1 Introduction 273</p> <p>11.2 Milk 274</p> <p>11.2.1 Microencapsulation of functional ingredients 274</p> <p>11.2.2 Microencapsulation of vitamins 278</p> <p>11.2.3 Microencapsulation of iron 279</p> <p>11.2.4 Microencapsulation of lactase 281</p> <p>11.2.5 Nanofunctional ingredients 285</p> <p>11.2.6 Nanocalcium 287</p> <p>11.3 Yogurt 287</p> <p>11.3.1 Microencapsulation of functional ingredients 287</p> <p>11.3.2 Microencapsulation of iron 288</p> <p>11.3.3 Nanofunctional ingredients 289</p> <p>11.4 Cheese 291</p> <p>11.4.1 Microencapsulation for accelerated cheese ripening 291</p> <p>11.4.2 Microencapsulation of iron 292</p> <p>11.4.3 Nanopowdered functional ingredients 292</p> <p>11.5 Others 293</p> <p>11.5.1 Microencapsulation of iron 293</p> <p>11.6 Conclusion 293</p> <p>References 294</p> <p><b>12 Application of Nano- and Microencapsulated Materials to Food Packaging 301</b><br /> <i>Loong-Tak Lim</i></p> <p>12.1 Introduction 301</p> <p>12.2 Nanocomposite technologies 302</p> <p>12.2.1 Layered silicate nanocomposites 302</p> <p>12.2.2 Mineral oxide and organic nanocrystal composites 305</p> <p>12.2.3 Material properties’ enhancement of biodegradable/compostable polymers 306</p> <p>12.3 Intelligent and active packaging based on nano- and microencapsulation technologies 307</p> <p>12.3.1 Product quality and shelf-life indicators 308</p> <p>12.3.2 Nano- and microencapsulated antimicrobial composites 312</p> <p>12.3.3 TiO2 ethylene scavenger for shelf-life extension of fruits and vegetables 317</p> <p>12.4 Conclusion 318</p> <p>References 319</p> <p><b>Part III Bioactivity, toxicity, and regulation of nanomaterial, nano- and microencapsulated ingredients 325</b></p> <p><b>13 Controlled Release of Food Ingredients 327</b><br /> <i>Sanghoon Ko and Sundaram Gunasekaran</i></p> <p>13.1 Introduction 327</p> <p>13.2 Fracturation 328</p> <p>13.3 Diffusion 329</p> <p>13.4 Dissolution 331</p> <p>13.5 Biodegradation 333</p> <p>13.6 External and internal triggering 334</p> <p>13.6.1 Thermosensitive 335</p> <p>13.6.2 Acoustic sensitive 336</p> <p>13.6.3 Light-sensitive 337</p> <p>13.6.4 pH-sensitive 338</p> <p>13.6.5 Chemical-sensitive 339</p> <p>13.6.6 Enzyme-sensitive 339</p> <p>13.6.7 Other stimuli 340</p> <p>13.7 Conclusion 340</p> <p>References 340</p> <p><b>14 Bioavailability and Bioactivity of Nanomaterial, Nano- and Microencapsulated Ingredients in Foods 345</b><br /> <i>Soo-Jin Choi</i></p> <p>14.1 Introduction 345</p> <p>14.2 Bioavailability of nano- and microencapsulated phytochemicals 347</p> <p>14.3 Bioavailability of other nano- and microencapsulated nutraceuticals 352</p> <p>14.4 Bioavailability of nano- and microencapsulated bioactive components 355</p> <p>14.5 Conclusion 357</p> <p>References 358</p> <p><b>15 Potential Toxicity of Food Ingredients Loaded in Nano- and Microparticles 363</b><br /> <i>Guanyu Chen, Soon-Mi Shim, and Jingyuan Wen</i></p> <p>15.1 Introduction 363</p> <p>15.2 Factors influence the toxicity of nano- and microparticles 365</p> <p>15.2.1 Size of the nano- and microparticles 366</p> <p>15.2.2 Shape of the nano- and microparticles 367</p> <p>15.2.3 Solubility of the nano- and microparticles 367</p> <p>15.2.4 Chemical composition of the nano- and microparticles 367</p> <p>15.3 Behavior and health risk of nano- and microparticles in the gastrointestinal (GI) tract 370</p> <p>15.3.1 Absorption 370</p> <p>15.3.2 Distribution 371</p> <p>15.3.3 Excretion/elimination 371</p> <p>15.4 Toxicity studies of nano- and microparticles 371</p> <p>15.4.1 Oral exposure studies for toxicity 371</p> <p>15.4.2 In vitro studies for toxicity 372</p> <p>15.4.3 Lack of an analytical method model to evaluate the safety of micro- and nanoparticles 373</p> <p>15.5 Risk assessment of micro- and nanomaterials in food applications 374</p> <p>15.5.1 Risk assessment 375</p> <p>15.6 Conclusion 377</p> <p>References 377</p> <p><b>16 Current Regulation of Nanomaterials Used as Food Ingredients 383</b><br /> <i>Hyun-Kyung Kim, Jong-Gu Lee, and Si-Young Lee</i></p> <p>16.1 Introduction 383</p> <p>16.2 The European Union (EU) 384</p> <p>16.2.1 Definition 384</p> <p>16.2.2 The EFSA Guidance 385</p> <p>16.2.3 Regulation 386</p> <p>16.3 The United Kingdom (UK) 388</p> <p>16.4 France 389</p> <p>16.5 The United States of America (USA) 389</p> <p>16.6 Canada 391</p> <p>16.7 Korea 392</p> <p>16.8 Australia and New Zealand 393</p> <p>References 393</p> <p>Index 395</p>
<p>“This book will help food companies to develop new nanotechnology for major problems such as the development of functional coatings to enhance the long-term suitability of food products.”  (<i>South African Food Science and Technology magazine</i>, 1 February 2015)</p>
<b>Hae-Soo Kwak </b>is a Professor in the Department of Food Science and Technology, and Dean of the Graduate School of Industryat Sejong University in Seoul, Korea. Dr Kwak has devoted his research career in nano- and microencapsulation, nanoparticles in food, and dairy products research for the past 25 years, publishing more than 450 revered journal articles, book chapters, patents, invited papers and abstracts in national and international conferences
<p>Nano- and microencapsulation are increasingly being utilized in the pharmaceutical, textile, agricultural, and food<br /> industries. In pharmaceuticals, encapsulation is a familiar concept, allowing for the slow release of a dose of<br /> a drug into the body. The same principle can be applied to foods to better control their various characteristics, for example, their bioavailability, bioactivity, or toxicity. By controlling the rate at which a food material is released to the body, it is possible to more accurately predict and measure the body’s reactions to it. Flavours, minerals,<br /> lipids, and probiotics may all be encapsulated for controlled release. A particular area of interest is functional foods (foods which can bestow a health benefit beyond their nutritional value alone) – encapsulation allows the controlled delivery and release of functional food ingredients, which helps researchers to better understand their specific health benefits.</p> <p><i>Nano- and Microencapsulation for Foods</i>highlights the principles, applications, toxicity, and regulation of nano- and microencapsulated foods. Section I describes the theories and concepts of nano- and microencapsulation for foods adapted from pharmaceutical areas, rationales and new strategies of encapsulation, and protection and controlled release of food ingredients. Section II examines the nano- and microencapsulation of food ingredients, such as vitamins, minerals, phytochemical, lipid, probiotics, and flavours. Section III focuses on the bioactivity, potential toxicity and regulation of nanomaterial, and encapsulated ingredients.</p> <p>This book will be highly beneficial to researchers, academics, and anyone seeking information about current trends in the nanofood science sector. It will also help food companies to develop new nanotechnology for major problems, such as the development of functional coatings to enhance long term stability of food products. As well as applications to foods and food products, the book also includes a chapter on the application of nano- and<br /> microencapsulation to food packaging materials, enhancing the book’s food industry focus. Overall, this book represents a new base for the development of nanofoods and nanomaterials, and an important reference source for the nanoresearch sector.</p>

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €