Details

Multifunctional Nanocomposites for Energy and Environmental Applications


Multifunctional Nanocomposites for Energy and Environmental Applications


1. Aufl.

von: Zhanhu Guo, Yuan Chen, Na Luna Lu

291,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 02.01.2018
ISBN/EAN: 9783527342471
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Focusing on real applications of nanocomposites and nanotechnologies for sustainable development, this book shows how nanocomposites can help to solve energy and environmental problems, including a broad overview of energy-related applications and a unique selection of environmental topics.<br> Clearly structured, the first part covers such energy-related applications as lithium ion batteries, solar cells, catalysis, thermoelectric waste heat harvesting and water splitting, while the second part provides unique perspectives on environmental fields, including nuclear waste management and carbon dioxide capture and storage.<br> The result is a successful combination of fundamentals for newcomers to the field and the latest results for experienced scientists, engineers, and industry researchers.<br>
<p>Contents to Volume 1</p> <p>Preface xiii</p> <p><b>1 Introduction to Nanocomposites 1<br /></b><i>Xingru Yan and Zhanhu Guo</i></p> <p>References 4</p> <p><b>2 Advanced Nanocomposite Electrodes for Lithium-Ion Batteries 7<br /></b><i>Jiurong Liu, Shimei Guo, Chenxi Hu, Hailong Lyu, Xingru Yan, and Zhanhu Guo</i></p> <p>2.1 Introduction 7</p> <p>2.2 Advanced Nanocomposites as Anode Materials for LIBs 8</p> <p>2.2.1 Carbonaceous Nanocomposites 9</p> <p>2.2.2 Carbon-Free Nanocomposites 15</p> <p>2.3 Advanced Nanocomposites as Cathode Materials for LIBs 17</p> <p>2.3.1 Traditional Cathode 18</p> <p>2.3.1.1 Lithium Transition Metal Oxides 19</p> <p>2.3.1.2 Vanadium Oxide 19</p> <p>2.3.1.3 Lithium Phosphates 20</p> <p>2.3.2 Advanced Nanocomposites as Cathode Materials 21</p> <p>2.3.2.1 Coating 21</p> <p>2.3.2.2 Composite with Carbon Nanotubes of Graphene 24</p> <p>2.3.2.3 Doping 26</p> <p>References 27</p> <p><b>3 Carbon Nanocomposites in Electrochemical Capacitor Applications 33<br /></b><i>Long Chen, LiliWu, and Jiahua Zhu</i></p> <p>3.1 Introduction 33</p> <p>3.2 Working Principle of Electrochemical Capacitor 34</p> <p>3.2.1 Electric Double Layer Capacitor 34</p> <p>3.2.2 Pseudocapacitor 35</p> <p>3.3 Characterization Techniques for Supercapacitor 36</p> <p>3.3.1 Electrode Preparation and Testing Cell Assembling 36</p> <p>3.3.1.1 Two-Electrode Method 36</p> <p>3.3.1.2 Three-Electrode Method 37</p> <p>3.3.2 Selection of Electrolyte 37</p> <p>3.3.3 Energy Storage Property Evaluation 38</p> <p>3.3.3.1 Capacitance 38</p> <p>3.3.3.2 Energy Density and Power Density 39</p> <p>3.3.3.3 Stability 40</p> <p>3.4 State-of-Art Carbon Nanocomposite Electrode 41</p> <p>3.4.1 Design Principles of Advanced Electrodes 41</p> <p>3.4.1.1 Electrical Conductivity 41</p> <p>3.4.1.2 Surface Area 42</p> <p>3.4.1.3 Suitable Pore Size 42</p> <p>3.4.2 Carbon/Carbon Nanocomposites 42</p> <p>3.4.2.1 Graphene/CNTs 43</p> <p>3.4.2.2 Graphene/Carbon Black 46</p> <p>3.4.2.3 Porous Carbon/CNTs 46</p> <p>3.4.3 Carbon/Metal Oxide Nanocomposites 47</p> <p>3.4.3.1 Graphene/Metal Oxide 47</p> <p>3.4.3.2 CNTs/Metal Oxide 49</p> <p>3.4.3.3 Porous Carbon/Metal Oxide 51</p> <p>3.4.4 Carbon/Conductive Polymer Nanocomposites 52</p> <p>3.4.4.1 Graphene/Conductive Polymer 52</p> <p>3.4.4.2 CNTs/Conductive Polymer 54</p> <p>3.4.4.3 Porous Carbon/Conductive Polymer 57</p> <p>3.4.4.4 Ternary Structured Nanocomposites 57</p> <p>3.5 Summary 58</p> <p>References 58</p> <p><b>4 Application of Nanostructured Electrodes in Halide Perovskite Solar Cells and Electrochromic Devices 67<br /></b><i>Qinglong Jiang, Xiaoqiao Zeng, Le Ge, Xiangyi Luo, and Lilin He</i></p> <p>4.1 Application of Nanostructured Electrodes for Halide Perovskite Solar Cells 67</p> <p>4.1.1 Introduction 67</p> <p>4.1.2 Halide Perovskite Material 67</p> <p>4.1.3 Halide Perovskite Solar Cells 68</p> <p>4.1.3.1 HTM Layer for Perovskite Solar Cells 69</p> <p>4.1.3.2 Cathodes 69</p> <p>4.1.4 Planar Structure Photoanodes for Perovskite Solar Cell 71</p> <p>4.1.5 Nanostructured Electrodes for Perovskite Solar Cell 71</p> <p>4.1.5.1 Mesoscopic Nanoparticles for Perovskite Solar Cells 71</p> <p>4.1.5.2 3D Nanowires for Perovskite Solar Cells 71</p> <p>4.1.6 Current Challenges for Halide Perovskite Solar Cell 74</p> <p>4.1.6.1 Lead and Lead-Free Perovskite Solar Cell 74</p> <p>4.1.6.2 Stability 75</p> <p>4.1.6.3 Summary 75</p> <p>4.2 Functionalized Nanocomposites for Low Energy Consuming Optoelectronic Electrochromic Device 75</p> <p>4.2.1 Electrochromism and Electrochromic Materials 75</p> <p>4.2.2 Electrochromic Device 76</p> <p>4.2.3 Nanostructured Electrodes for EC Devices 77</p> <p>4.2.3.1 Nanotube 77</p> <p>4.2.3.2 Nanowires 78</p> <p>4.2.3.3 Nanoparticles 78</p> <p>4.2.3.4 Conductive Nanobeads 79</p> <p>4.2.4 Current Challenges in Electrochromism 82</p> <p>4.3 Conclusion 82</p> <p>References 83</p> <p><b>5 Perovskite Solar Cell 91<br /></b><i>Erkin Shabdan, Blake Hanford, Baurzhan Ilyassov, Kadyrzhan Dikhanbayev, and Nurxat Nuraje</i></p> <p>5.1 Introduction 91</p> <p>5.2 Properties and Characteristics 92</p> <p>5.2.1 Unit Cell 93</p> <p>5.2.2 Madelung Constant and Lattice Energy 95</p> <p>5.2.3 Phase Transition 95</p> <p>5.2.4 Physical Properties 95</p> <p>5.3 Solar Cell Application 97</p> <p>5.3.1 Basic Solar Cell Operation 98</p> <p>5.3.2 Fabrication of Perovskite Solar Cells 99</p> <p>5.3.3 Stability of the Perovskite Material 104</p> <p>5.3.4 Temperature Effects on Perovskite Material 106</p> <p>5.3.5 Flexible Perovskite Materials 106</p> <p>5.3.6 Perovskite Solar Cell Performance 107</p> <p>5.4 Conclusion 108</p> <p>References 109</p> <p><b>6 Nanocomposite Structures Related to Electrospun Nanofibers for Highly Efficient and Cost-Effective Dye-Sensitized Solar Cells 113<br /></b>X<i>iaojing Ma, Fan Zheng, Yong Zhao, XiaoxuWang, Zhengtao Zhu, and Hao Fong</i></p> <p>6.1 Introduction of Dye-Sensitized Solar Cells 113</p> <p>6.1.1 Solar Energy Absorption 114</p> <p>6.1.2 Electron Transport in Photoanode 114</p> <p>6.1.3 Dye Regeneration 115</p> <p>6.2 Composites of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers as Highly Efficient Photoanodes 116</p> <p>6.3 Electrospun TiC/C Composite Nano-felt Surface Decorated with Pt Nanoparticles as a Cost-Effective Counter Electrode 121</p> <p>6.4 Concluding Remarks 129</p> <p>Acknowledgments 130</p> <p>References 130</p> <p><b>7 Colloidal Synthesis of Advanced Functional Nanostructured Composites and Alloys via Laser Ablation-Based Techniques 135<br /></b><i>Sheng Hu and Dibyendu Mukherjee</i></p> <p>7.1 Introduction 135</p> <p>7.1.1 Conventional Routes for Synthesizing NMs 135</p> <p>7.1.2 Laser Ablation Synthesis in Solution (LASiS) 136</p> <p>7.1.3 Laser Ablation Synthesis in Solution-Galvanic Replacement Reaction (LASiS-GRR) 138</p> <p>7.1.4 Description of the LASiS/LASiS-GRR Setup 139</p> <p>7.1.5 Applications of LASiS/LASiS-GRR for the Synthesis of Functional NCs and NAs 140</p> <p>7.2 Synthesis of PtCo/CoOx NCs via LASiS-GRR as ORR/OER Bifunctional Electrocatalysts 141</p> <p>7.2.1 Mechanistic Picture of LASiS-GRR 141</p> <p>7.2.2 Structure and Composition Analysis for the PtCo/CoOx NCs 142</p> <p>7.2.3 Investigation of ORR/OER Catalytic Activities 146</p> <p>7.3 Synthesis of Pt-Based Binary and Ternary NAs as ORR Electrocatalysts for PEMFCs 148</p> <p>7.3.1 PtCo NAs Synthesized with Different Pt Salt Concentrations 148</p> <p>7.3.2 PtCo NAs Synthesized with Different pH Conditions 151</p> <p>7.3.3 Synthesis of Pt-Based Ternary NAs 153</p> <p>7.3.4 Investigation of ORR Electrocatalytic Activities 156</p> <p>7.4 Synthesis of Hybrid CoOx/N-DopedGONCs as Bifunctional ORR Electrocatalysts/Supercapacitors 159</p> <p>7.5 Conclusion and Future Directions 166</p> <p>References 168</p> <p><b>8 Thermoelectric Nanocomposite for Energy Harvesting 173<br /></b><i>Ehsan Ghafari, Frederico Severgnini, Seyedali Ghahari, Yining Feng, Eu Jin Lee, Chaoyi Zhang, Xiaodong Jiang, and Na Lu</i></p> <p>8.1 Introduction 173</p> <p>8.2 Fundamental of Thermoelectric Effect 176</p> <p>8.2.1 Seebeck Effect 176</p> <p>8.2.2 Thermal Conductivity 179</p> <p>8.2.3 Electrical Conductivity 181</p> <p>8.2.4 Figure of Merit 181</p> <p>8.3 Historical Perspective of Thermoelectric Materials Development 182</p> <p>8.3.1 Early Discovery ofThermoelectricity 182</p> <p>8.3.2 TE Devices in Post-90 182</p> <p>8.4 Thermoelectric Nanocomposites andTheir Processing Methods 185</p> <p>8.4.1 Bismuth Telluride, PbTe, SbTe, Etc. 185</p> <p>8.4.2 Emerging Materials: Silicides and Nitrides 187</p> <p>8.4.3 SiGe and Other RTG Materials 189</p> <p>8.4.4 Oxide 190</p> <p>8.4.4.1 n-Type Oxide ZnO-Based Materials 190</p> <p>8.4.4.2 p-Type Oxide 191</p> <p>8.5 Thermoelectric Device Design and Characterizations 192</p> <p>8.5.1 Device Physics and Calculation 192</p> <p>8.5.2 TE Device Fabrication and Its Applications 194</p> <p>References 197</p> <p><b>9 Graphene Composite Catalysts for Electrochemical Energy Conversion 203<br /></b><i>GangWu and Ping Xu</i></p> <p>9.1 Introduction 203</p> <p>9.1.1 Graphene Catalysts 203</p> <p>9.1.2 Applications for Energy Conversion 205</p> <p>9.1.3 Challenge for Oxygen Electrocatalysis 206</p> <p>9.2 Preparation of Graphene Catalysts 207</p> <p>9.3 Graphene Catalysts for Energy Conversion 211</p> <p>9.3.1 Reduced Graphene Oxide Catalysts 211</p> <p>9.3.2 Nitrogen-Doped Graphene Composite Catalysts from Graphitization 216</p> <p>9.3.3 Bifunctional Graphene Composite Catalysts 221</p> <p>9.4 Summary and Perspective 223</p> <p>Acknowledgments 223</p> <p>References 223</p> <p><b>10 Electrochromic Materials and Devices: Fundamentals and Nanostructuring Approaches 231<br /></b><i>DongyunMa, JinminWang, HuigeWei, and Zhanhu Guo</i></p> <p>10.1 Introduction 231</p> <p>10.2 Notes on History and Early Applications 232</p> <p>10.3 Electrochromic Materials and Devices 233</p> <p>10.3.1 Overview of Electrochromic Materials 233</p> <p>10.3.1.1 Transition Metal Oxides 233</p> <p>10.3.1.2 Prussian Blue and Transition Metal Hexacyanometallates 237</p> <p>10.3.1.3 Conducting Polymers 237</p> <p>10.3.1.4 Viologens 239</p> <p>10.3.1.5 Transition Metal Coordination Complexes 240</p> <p>10.3.1.6 Others 240</p> <p>10.3.2 Constructions of Electrochromic Devices 241</p> <p>10.4 Performance Parameters of Electrochromic Materials and Device 242</p> <p>10.4.1 Contrast Ratio 242</p> <p>10.4.2 Response Time 242</p> <p>10.4.3 Coloration Efficiency 243</p> <p>10.4.4 Cycle Life 243</p> <p>10.5 Application of Nanostructures in Electrochromic Materials and Devices 243</p> <p>10.5.1 Nanoparticles 244</p> <p>10.5.2 One-Dimensional (1D) Nanostructures 247</p> <p>10.5.3 Two-Dimensional (2D) Nanostructures 251</p> <p>10.5.4 Nanocomposites 255</p> <p>10.6 Conclusions and Perspective 258</p> <p>References 259</p> <p><b>11 Nanocomposite Photocatalysts for Solar Fuel Production from CO2 and Water 271<br /></b><i>Huilei Zhao and Ying Li</i></p> <p>11.1 Introduction 271</p> <p>11.2 Overview of Principles and Photocatalysts for CO2 Photoreduction 271</p> <p>11.3 Experimental Apparatus and Methods for CO2 Photoreduction 273</p> <p>11.3.1 Experimental System of Photocatalytic CO2 Reduction 273</p> <p>11.3.2 Description of the DRIFTS System 274</p> <p>11.4 Innovative TiO2 Materials Design for Promoted CO2 Photoreduction to Solar Fuels 275</p> <p>11.4.1 Mixed-Phase Crystalline TiO2 for CO2 Photoreduction 275</p> <p>11.4.1.1 Materials Synthesis and Characterization 276</p> <p>11.4.1.2 Photocatalytic Activity of CO2 Photoreduction 277</p> <p>11.4.2 TiO2 with Engineered Exposed Facets 278</p> <p>11.4.2.1 Materials Synthesis and Characterization 279</p> <p>11.4.2.2 Photocatalytic Activity of CO2 Photoreduction 280</p> <p>11.4.2.3 Mechanism Investigation 282</p> <p>11.4.3 Oxygen-Deficient TiO2 for CO2 Photoreduction 282</p> <p>11.4.4 Cu/TiO2 with Different Cu Valances 286</p> <p>11.4.4.1 Material Synthesis and Characterizations 286</p> <p>11.4.4.2 Photocatalytic Activity of CO2 Photoreduction 286</p> <p>11.4.4.3 Mechanism Investigation 287</p> <p>11.4.5 TiO2 Modified with Enhanced CO2 Adsorption 289</p> <p>11.4.5.1 MgO/TiO2 289</p> <p>11.4.5.2 LDO/TiO2 295</p> <p>11.4.5.3 Hybrid TiO2 with MgAl(LDO) 297</p> <p>11.5 Conclusions 299</p> <p>References 300</p> <p>Contents to Volume 2</p> <p>Preface xiii</p> <p><b>12 The Applications of Nanocomposite Catalysts in Biofuel Production 309<br /></b><i>Xiaokun Yang, Kan Tang, Akkrum Nasr, and Hongfei Lin</i></p> <p>12.1 Introduction 309</p> <p>12.2 Bio-Gasoline 311</p> <p>12.2.1 Alcohols and Polyols 312</p> <p>12.2.2 Carbohydrates 312</p> <p>12.2.3 Lignocellulosic Biomass 316</p> <p>12.2.4 Lipids and Lactones 318</p> <p>12.2.5 Lactones 320</p> <p>12.3 Bio-Jet Fuels 320</p> <p>12.3.1 Bio-Jet Fuels from Carbohydrates 322</p> <p>12.3.1.1 Sugars 322</p> <p>12.3.1.2 Hemicellulose/Cellulose 322</p> <p>12.3.2 Lignin 326</p> <p>12.3.3 Bio-Jet Fuels from Lignocellulose-Derived Platform Chemicals 326</p> <p>12.3.3.1 Noble Metal on Porous Support 326</p> <p>12.3.3.2 Bimetallic Nanocatalysts 329</p> <p>12.3.4 Other Renewable Biomass Feedstock 332</p> <p>12.4 Renewable Diesel Fuel 333</p> <p>12.4.1 Hemicellulose/Cellulose 333</p> <p>12.4.2 Lignocellulose Derivative Platforms 336</p> <p>12.4.3 Plant Oils/Fatty Acids 337</p> <p>12.5 Conclusion 340</p> <p>References 340</p> <p>Contents to Volume 1 vii</p> <p><b>13 Photocatalytic Nanomaterials for the Energy and Environmental Application 353<br /></b><i>Zuzeng Qin, Tongming Su, and Hongbing Ji</i></p> <p>13.1 Introduction 353</p> <p>13.2 Preparation of Photocatalytic Nanomaterials 354</p> <p>13.2.1 Solid-State Method 355</p> <p>13.2.2 PrecipitationMethod 355</p> <p>13.2.3 Hydrothermal Method 355</p> <p>13.2.4 Sol–Gel Method 356</p> <p>13.2.5 Solvothermal Method 356</p> <p>13.2.6 Other PreparationMethods 356</p> <p>13.3 Application of Photocatalytic Nanomaterials in the Energy 357</p> <p>13.3.1 Photocatalytic Conversion of Carbon Dioxide to Methanol 357</p> <p>13.3.1.1 Different Kinds of Catalysts 358</p> <p>13.3.1.2 Reaction Mechanism 364</p> <p>13.3.2 Photocatalytic Conversion of Carbon Dioxide to Formate 365</p> <p>13.3.2.1 Different Kinds of Catalysts 365</p> <p>13.3.2.2 Reaction Mechanism 367</p> <p>13.3.3 Photocatalytic Conversion of Carbon Dioxide to Methane 368</p> <p>13.3.3.1 Different Kinds of Catalysts 368</p> <p>13.3.3.2 Reaction Mechanism 370</p> <p>13.3.4 Photocatalytic Conversion of Carbon Dioxide to Carbon Monoxide 373</p> <p>13.3.4.1 Different Kinds of Catalysts 373</p> <p>13.3.4.2 Reaction Mechanism 374</p> <p>13.3.5 Photocatalytic Reactor for CO2 Reduction 376</p> <p>13.4 Application of Photocatalytic Nanomaterials in the Environment 381</p> <p>13.4.1 Photocatalysts for Degradation of Organic Pollutant 382</p> <p>13.4.2 Reaction Mechanism 386</p> <p>13.4.3 Photocatalytic Reactor for Photocatalytic Degradation of Organic Pollutant 387</p> <p>13.5 Conclusion and Prospect 390</p> <p>Acknowledgments 391</p> <p>References 391</p> <p><b>14 Role of Interfaces at Nano-Architectured Photocatalysts for Hydrogen Production fromWater Splitting 403<br /></b><i>Rui Peng and ZiliWu</i></p> <p>14.1 Introduction 403</p> <p>14.2 Basic Principles of Hydrogen Generation from Photocatalytic Water Splitting 405</p> <p>14.2.1 Main Processes of Photocatalytic Hydrogen Generation 405</p> <p>14.2.2 Approaches for Enhancement of Photocatalytic Hydrogen Evolution Efficiency 408</p> <p>14.2.2.1 Sacrificial Reagent 408</p> <p>14.2.2.2 Cocatalyst 409</p> <p>14.3 Photocatalytic Hydrogen Generation System Composing Functions of Interface at Nano-Architectures 410</p> <p>14.3.1 Metal–Semiconductor Interfaces 410</p> <p>14.3.1.1 Schottky Barrier 410</p> <p>14.3.1.2 Surface Plasmon-Enhanced Photocatalytic Hydrogen Production 414</p> <p>14.3.2 Semiconductor–Semiconductor Interfaces 420</p> <p>14.3.2.1 Semiconductor p–n Junction System 420</p> <p>14.3.2.2 Non- p–n Heterojunction Semiconductor System 423</p> <p>14.4 Summary and Prospects 427</p> <p>Acknowledgments 428</p> <p>References 428</p> <p><b>15 Nanostructured Catalyst for Small Molecule Conversion 439<br /></b><i>Zhongyuan Huang, Jinbo Zhao, Haixiang Song, Yafei Kuang, and ZheWang</i></p> <p>15.1 Supported 0D Structure 439</p> <p>15.2 Unsupported 1D Nanostructures 445</p> <p>15.3 Hierarchical Supportless Nanostructures 453</p> <p>References 463</p> <p><b>16 Rational Heterostructure Design for Photoelectrochemical Water Splitting 467<br /></b><i>Shaohua Shen,MengWang, and Xiangyan Chen</i></p> <p>16.1 Introduction 467</p> <p>16.1.1 Fundamentals 467</p> <p>16.1.2 Efficiency Evaluation 469</p> <p>16.1.3 Materials for PhotoelectrochemicalWater Splitting 470</p> <p>16.2 TiO2- and ZnO-Based Heterostructures 471</p> <p>16.2.1 Quantum Dot (QD) Sensitization 471</p> <p>16.2.2 Plasmonic Modification 474</p> <p>16.2.3 Cocatalyst Decoration 479</p> <p>16.2.4 Conductive MaterialModification 482</p> <p>16.3 ;;-Fe2O3-Based Heterostructures 483</p> <p>16.3.1 Semiconductor Heterojunctions 485</p> <p>16.3.2 Nanotextured Conductive Substrates 489</p> <p>16.3.3 Surface Passivation 492</p> <p>16.3.4 Cocatalyst Decoration 494</p> <p>16.4 WO3- and BiVO4-Based Heterostructures 497</p> <p>16.4.1 Coupling with Other Semiconductors 498</p> <p>16.4.2 Coupling with Oxygen Evolution Catalysts 501</p> <p>16.5 Cu2O- and CuO-Based Heterostructures 504</p> <p>16.5.1 Cu2O and CuO Photocathodes 504</p> <p>16.5.2 Heterostructure Design 504</p> <p>16.6 Other Metal Oxide-Based Heterostructures 509</p> <p>16.7 Summary and Perspectives 510</p> <p>16.7.1 Mechanism Investigation 510</p> <p>16.7.2 Construction of New Heterostructures 511</p> <p>16.7.3 Tandem Cell for Overall PECWater Splitting 511</p> <p>Acknowledgments 511</p> <p>References 512</p> <p><b>17 Layered Double Hydroxide-Derived NOx Storage and Reduction Catalysts for Vehicle NOx Emission Control 527<br /></b><i>Tianshan Xue,Wanlin Gao, XueyiMei, Yuhan Cui, and QiangWang</i></p> <p>17.1 Introduction 527</p> <p>17.1.1 Harm of Vehicle Exhausts 527</p> <p>17.1.2 NOx Treatment Technology for Vehicle Exhausts 527</p> <p>17.1.3 Chemical Constituent and Structure of LDHs 529</p> <p>17.2 Mechanism of NOx Storage on LDH-Derived Catalysts 530</p> <p>17.3 The Influence of LDH Chemical Composition on NSR 531</p> <p>17.4 The Influence of Other Key Parameters 533</p> <p>17.4.1 The Influence of Calcination Temperature 533</p> <p>17.4.2 The Influence of Base Metal Loading 534</p> <p>17.4.3 The Influence of Noble Metal Loading 535</p> <p>17.5 Conclusions 537</p> <p>References 538</p> <p><b>18 Applications of Nanomaterials in NuclearWaste Management 543<br /></b><i>Yawen Yuan, HuaWang, Shifeng Hou, and Deying Xia</i></p> <p>18.1 Introduction 543</p> <p>18.2 Applications of Nanomaterials in Removal of Radionuclides from RadioactiveWastes 544</p> <p>18.2.1 Graphene-Related Nanomaterials 545</p> <p>18.2.2 Carbon Nanotubes (CNTs) 548</p> <p>18.2.3 Magnetic Nanoparticles 549</p> <p>18.2.4 Silver-Related Nanomaterials for I− Removal 551</p> <p>18.2.5 Ion Exchange Nanomaterials 553</p> <p>18.2.6 Mesoporous Silica 554</p> <p>18.2.7 Other Nanomaterials 556</p> <p>18.3 Conclusion and Perspectives 557</p> <p>References 560</p> <p><b>19 Electromagnetic Interference Shielding Polymer Nanocomposites 567<br /></b><i>Xingru Yan, Licheng Xiang, Qingliang He, Junwei Gu, Jing Dang, Jiang Guo, and Zhanhu Guo</i></p> <p>19.1 Introduction 567</p> <p>19.2 Criteria to Evaluate the Shielding Effectiveness 571</p> <p>19.2.1 Conductive ShieldingMaterials with Negligible Magnetic Property 571</p> <p>19.2.2 Conductive Shielding Materials with Magnetic Property 573</p> <p>19.2.3 Theoretical Analysis 574</p> <p>19.2.3.1 Magnetic Loss 574</p> <p>19.2.3.2 Eddy Current Loss 574</p> <p>19.2.3.3 Magnetic Hysteresis Loss 574</p> <p>19.2.3.4 Residual Loss 574</p> <p>19.3 Why EMI Shielding Polymer Nanocomposites? 575</p> <p>19.3.1 Carbon-Based Nanofillers 575</p> <p>19.3.2 Metal-Based Nanofillers 583</p> <p>19.3.3 Conductive Polymer-Based Nanofillers 590</p> <p>19.3.4 Other Nanofillers 593</p> <p>19.4 Conclusion and Perspective 593</p> <p>References 594</p> <p><b>20 Mussel-Inspired Nanocomposites: Synthesis and Promising Applications in Environmental Fields 603<br /></b><i>Lu Shao, Xiaobin Yang, ZhenxingWang, and Libo Zhang</i></p> <p>20.1 Introduction 603</p> <p>20.2 Preparation, Structure, Mechanism, and Properties of Mussel-Inspired PDA 605</p> <p>20.2.1 Polymerization Conditions and Process 605</p> <p>20.2.2 Possible Structures and Adhesion Mechanisms 609</p> <p>20.2.3 Surface Modification Methods Based on PDA 615</p> <p>20.2.4 Other Physicochemical Properties of PDA 622</p> <p>20.2.4.1 Good Acid Resistance and Poor Alkaline Resistance 622</p> <p>20.2.4.2 Ultraviolet Resistance 623</p> <p>20.2.4.3 Carbon Precursor 624</p> <p>20.3 Mussel-Inspired Materials forWastewater Treatment 626</p> <p>20.3.1 Mussel-Inspired SpecialWettable Materials for Oil/Water Separation 626</p> <p>20.3.1.1 PDA-Based Nanoparticles 627</p> <p>20.3.1.2 PDA-Based Textiles 628</p> <p>20.3.1.3 PDA-Based Foams 628</p> <p>20.3.1.4 PDA-Based Membranes 631</p> <p>20.3.2 Mussel-Inspired Adsorbents for Removal of Heavy Metal, Organic Pollutants, and Bacterial fromWater 633</p> <p>20.3.2.1 Pure PDA Nanoparticles 633</p> <p>20.3.2.2 Magnetic Core–Shell Nanoparticles 633</p> <p>20.3.2.3 PDA Compound with Lamellar Structure 634</p> <p>20.3.2.4 Mussel-Inspired Adsorbents Based on Other Inorganic Materials 637</p> <p>20.3.2.5 PDA-Modified Porous Polymer Membrane 638</p> <p>20.3.3 Mussel-Inspired Catalysts for Degradation of Organic Pollutants 640</p> <p>20.4 Outlook 643</p> <p>References 644</p> <p>Index 651</p>
Zhanhu Guo is Associate Professor in the Department of Chemical and Biomolecular Engineering at The University of Tennessee, Knoxville, USA. He received his PhD in chemical engineering from Louisiana State University, USA, followed by postdoctoral studies in mechanical and aerospace engineering at the University of California, Los Angeles, USA. He was the Chair of the Composite Division of the American Institute of Chemical Engineers in 2010-2011. Dr. Guo's Integrated Composites Laboratory focuses on multifunctional nanocomposites for energy, environmental and electronic devices applications.<br> <br> Yuan Chen is Professor in the School of Chemical and Biomolecular Engineering at The University of Sydney, Australia. He received his PhD in chemical engineering from Yale University. Before joining The University of Sydney, he was Associate Professor at Nanyang Technological University, Singapore, where he served as Head of the Chemical and Biomolecular Engineering Division in 2011-2014. His research focuses on carbon nanomaterials for sustainable energy and environmental applications. He received several awards including Australian Research Council Future Fellowship in 2017 and Young Scientist Awards by the Singapore National Academy of Science in 2011.<br> <br> Na (Luna) Lu is an associate professor of the Lyles School of Civil Engineering and School of Materials Engineering at Purdue University. She has research interests/ expertise in using nanotechnology to tailor a materials? (electrical, thermal, mechanical, and optical) properties for renewable energy applications, in particular, thermoelectric, piezoelectric and solar cells. Fundamentally, her group studies electron, phonon, and photon transport mechanisms for a given materials system, and designs the transport properties to meet the targeted performance. Her research work has been featured in national and regional media. She is the recipient of a 2014 National Science Foundation Yong Investigator CAREER Award.<br>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €