Details

Molecular Technology, Volume 4


Molecular Technology, Volume 4

Synthesis Innovation
1. Aufl.

von: Hisashi Yamamoto, Takashi Kato

124,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 13.02.2019
ISBN/EAN: 9783527820436
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Edited by foremost leaders in chemical research together with a number of distinguished international authors, this fourth volume summarizes the most important and promising recent developments in synthesis, polymer chemistry and supramolecular chemistry.</p> <p>Interdisciplinary and application-oriented, this ready reference focuses on innovative methods, covering new developments in catalysis, synthesis, polymers and more.</p>
<p><b>1 Polymerization-Induced Self-assembly of Block Copolymer Nano-objects via Green RAFT Polymerization </b><b>1<br /></b><i>Shinji Sugihara</i></p> <p>1.1 Introduction 1</p> <p>1.2 Block Copolymer Solution 1</p> <p>1.3 Synthesis of Block Copolymers via RAFT Polymerization 4</p> <p>1.4 Polymerization-Induced Self-assembly 6</p> <p>1.4.1 PISA Using RAFT Process: Emulsion and Aqueous Dispersion Polymerization 6</p> <p>1.4.2 Reagents for RAFT Aqueous Dispersion Polymerization 9</p> <p>1.4.2.1 RAFT Agents 9</p> <p>1.4.2.2 Steric Stabilizer (Macro-CTA, Shell) 9</p> <p>1.4.2.3 Monomers (Core) 9</p> <p>1.4.3 Representative RAFT Aqueous Dispersion Polymerization 11</p> <p>1.5 Promising Polymerization Technology 17</p> <p>References 21</p> <p><b>2 Chemical Functionalization of Graphitic Nanocarbons </b><b>31<br /></b><i>Yuta Nishina</i></p> <p>2.1 Purpose of Functionalization 31</p> <p>2.2 Edge Functionalization 34</p> <p>2.3 Basal Plane Functionalization 37</p> <p>2.3.1 Hydrogenation and Halogenation 37</p> <p>2.3.2 Radical Addition 37</p> <p>2.3.3 Cycloaddition 40</p> <p>2.4 Miscellaneous 42</p> <p>2.4.1 Oxidation 42</p> <p>2.4.2 Covalent Bond Formation via Halogenation 42</p> <p>2.4.3 Rearrangement 42</p> <p>2.5 Non-covalent Functionalization 44</p> <p>2.5.1 Functionalization with π–π Interactions 45</p> <p>2.5.2 Functionalization with van der Waals, Ionic Interactions, and Hydrogen Bonding 45</p> <p>2.5.3 Functionalization with Polymers 46</p> <p>2.6 Future Perspective of Graphitic Nanocarbon Functionalization 48</p> <p>References 48</p> <p><b>3 Synthetic Methods Using Interactions Between Sustainable Iron Reagents and Functionalized Carbon–Carbon Multiple Bonds </b><b>51<br /></b><i>Takeshi Hata</i></p> <p>3.1 Cross-coupling Reactions 52</p> <p>3.1.1 C(sp<sup>2</sup>)–X/C(sp<sup>3</sup>)–Metal 52</p> <p>3.1.2 C(sp<sup>2</sup>)–X/C(sp<sup>2</sup>)–Metal 54</p> <p>3.1.3 C(sp<sup>2</sup>)–X/C(sp)–Metal 55</p> <p>3.1.4 C(sp)–X/C(sp<sup>2</sup>)–Metal 55</p> <p>3.1.5 C(sp<sup>3</sup>)–X/C(sp<sup>2</sup>)–Metal 55</p> <p>3.1.6 Mizoroki–Heck Reaction 56</p> <p>3.2 Substitution Reactions 56</p> <p>3.3 Carbometallation 58</p> <p>3.4 Conjugate Addition 59</p> <p>3.5 Cycloaddition 67</p> <p>3.5.1 [2+2] Cycloadditions 67</p> <p>3.5.2 [3+2] Cycloadditions 68</p> <p>3.5.3 [4+1] Cycloadditions 68</p> <p>3.5.4 [4+2] Cycloadditions 68</p> <p>3.5.5 1,3-Dipolar Cycloadditions 70</p> <p>3.6 Others 71</p> <p>3.6.1 C—H Bond Activation 71</p> <p>3.6.2 Nazarov Cyclization 72</p> <p>3.6.3 Friedel–Crafts Reaction 72</p> <p>3.7 Conclusion 73</p> <p>References 73</p> <p><b>4 Molecular Technology for Switch and Amplification of Chirality in Asymmetric Catalysis Using a Helically Dynamic Macromolecular Scaffold as a Source of Chirality </b><b>77<br /></b><i>Michinori Suginome</i></p> <p>4.1 Introduction 77</p> <p>4.2 Molecular Design and Synthesis of PQX-Based Chiral Catalysts 79</p> <p>4.3 Dynamic, Bidirectional Induction of Helical Chirality to PQX 81</p> <p>4.4 PQX as Chirality-Switchable Chiral Catalysts in Catalytic Asymmetric Synthesis 82</p> <p>4.4.1 Palladium-Catalyzed Asymmetric Reactions Using PQXphos Bearing Monophosphine Pendants on PQX 82</p> <p>4.4.2 Copper-Catalyzed Asymmetric Reactions Using PQXbpy Bearing 2,2’-Bipyridin-6-yl Pendants on PQX 87</p> <p>4.4.3 Organocatalytic Asymmetric Reactions Using PQXap Bearing 4-Aminopyridin-3-yl Pendants on PQX 88</p> <p>4.5 Chirality Amplification in Asymmetric Catalysis 90</p> <p>4.6 Closing Remarks 92</p> <p>References 92</p> <p><b>5 Cooperative Double Activation Metal/Metal and Metal/Organic Catalysis Enabling Challenging Organic Reactions </b><b>95<br /></b><i>Yoshiaki Nakao</i></p> <p>5.1 Introduction 95</p> <p>5.2 C—H Functionalization by Cooperative Double Activation Catalysis 96</p> <p>5.3 C—C Functionalization by Cooperative Double Activation Catalysis 106</p> <p>5.4 Miscellaneous Reactions by Cooperative Double Activation Catalysis 109</p> <p>5.5 Summary and Outlook 113</p> <p>References 114</p> <p><b>6 Siloxane-Based Building Blocks forMolecular Technology </b><b>119<br /></b><i>Shohei Saito, Naoto Sato, Masashi Yoshikawa, Atsushi Shimojima, and Kazuyuki Kuroda</i></p> <p>6.1 Introduction 119</p> <p>6.2 Siloxane Bond Formation for Organization 120</p> <p>6.2.1 Hydrolytic Reactions 120</p> <p>6.2.2 Non-hydrolytic Reactions 121</p> <p>6.3 Various Organosilane and Siloxane-Based Building Blocks 123</p> <p>6.3.1 Organosilanes 123</p> <p>6.3.2 Cyclic Siloxanes 126</p> <p>6.3.3 Cage Siloxanes 127</p> <p>6.3.4 Branched and Dendritic Siloxanes 131</p> <p>6.4 Structure and Morphology of Assembled Building Blocks 133</p> <p>6.4.1 Organization of Building Blocks 133</p> <p>6.4.2 One-Dimensionally Structured Materials 134</p> <p>6.4.3 Two-Dimensionally Structured Materials 137</p> <p>6.4.4 Three-Dimensionally Structured Materials 144</p> <p>6.5 Conclusions 150</p> <p>References 151</p> <p><b>7 Organic Molecular Catalysts in Radical Chemistry: Challenges Toward Selective Transformations </b><b>163<br /></b><i>Daisuke Uraguchi, Kohsuke Ohmatsu, and Takashi Ooi</i></p> <p>7.1 Background 163</p> <p>7.2 Organic Photocatalysts 169</p> <p>7.3 Selective Transformations Catalyzed or Mediated by Organic Molecular Radicals 181</p> <p>7.4 Radical Reactions Combined with Asymmetric Organic Molecular Catalysis 184</p> <p>7.5 Future Outlook 192</p> <p>References 192</p> <p><b>8 Coordination Molecular Technology </b><b>199<br /></b><i>Nobuto Yoshinari and Takumi Konno</i></p> <p>8.1 Introduction: Coordination Molecular Technology 199</p> <p>8.2 Non-Coulombic Ionic Solid (NCIS) 200</p> <p>8.3 Low-Packing Type NCIS 201</p> <p>8.3.1 Porous Materials 201</p> <p>8.3.2 Classical Molecular Design of Porous Ionic Solids 203</p> <p>8.3.2.1 “Giant Ion Approach” for Porous Ionic Solids 205</p> <p>8.3.2.2 “Low Coordination Number Approach” for Porous Ionic Solids 206</p> <p>8.3.3 Prototype of Porous Low-Packing Type NCIS 207</p> <p>8.3.4 pH-Controlled Formation of Porous Low-Packing Type NCIS 209</p> <p>8.3.5 Short Summary of Low-Packing Type NCIS 211</p> <p>8.4 Ion-Fluid Type NCIS 211</p> <p>8.4.1 Ion-Conducting Ionic Solids 211</p> <p>8.4.2 MOF-Based Ion-Conducting Materials 213</p> <p>8.4.3 Design of Ion-Conducting Materials Based on Metal–Organic Clusters 214</p> <p>8.4.4 Prototype of Ion-Fluid Type NCIS 215</p> <p>8.4.5 Ion-Exchange Ability of Ion-Fluid Type NCIS 217</p> <p>8.4.6 Short Summary of Ion-Fluid Type NCIS 218</p> <p>8.5 Charge-Separation Type NCIS 218</p> <p>8.5.1 Ionic Crystals with Non-alternate Arrangement of Cations and Anions 219</p> <p>8.5.2 Prototype of Charge-Separation Type NCIS 220</p> <p>8.5.3 Functionality of Charge-Separation Type NCIS 224</p> <p>8.5.3.1 Catalase-Like Activity 224</p> <p>8.5.3.2 Negative Electrostrictive Effect 225</p> <p>8.5.4 Short Summary of Charge-Separation Type NCIS 226</p> <p>8.6 Conclusion 226</p> <p>References 227</p> <p><b>9 Molecular Technology for Synthesis of Versatile Copolymers via Multiple Polymerization Mechanisms </b><b>231<br /></b><i>Kotaro Satoh</i></p> <p>9.1 Introduction 231</p> <p>9.2 Transformation of Active Species in Chain-Growth Vinyl Polymerization 234</p> <p>9.2.1 Controlled/Living Polymerization of Vinyl Monomers 234</p> <p>9.2.2 Indirect Transformation Involving Terminal Conversion and Tandem Polymerization 236</p> <p>9.2.3 Umpolung One-Pot Direct Polymerization 238</p> <p>9.3 Mechanistic Transformation Through Carbon–Halogen Bond 238</p> <p>9.3.1 Transformation of Anionic or Coordination Polymerization 238</p> <p>9.3.2 Combination of Radical and Cationic Polymerizations 242</p> <p>9.4 Mechanistic Transformation Through Carbon–Sulfur Bond 243</p> <p>9.4.1 Transformation Using RAFT Polymerization 243</p> <p>9.4.2 Reversible Umpolung Transformation During Polymerization 244</p> <p>9.5 Combination Between Step- and Chain-Growth Polymerization 248</p> <p>9.5.1 Indirect Transformation for Block Copolymer Synthesis 248</p> <p>9.5.2 Simultaneous Step- and Chain-Growth Polymerization 250</p> <p>9.6 Conclusion 251</p> <p>References 251</p> <p><b>10 Self-assembled Monolayers from Carbon-Based Ligands on Metal Surfaces </b><b>259<br /></b><i>Christene A. Smith and Cathleen M. Crudden</i></p> <p>10.1 Introduction 259</p> <p>10.2 NHC Ligands on Two-Dimensional Surfaces 260</p> <p>10.3 NHCs on Three-Dimensional Surfaces 272</p> <p>10.3.1 NHC-Stabilized Au Metal Nanoparticles 273</p> <p>10.3.1.1 NHC-Stabilized Au Metal Nanoparticles by Ligand Exchange 273</p> <p>10.3.1.2 NHC-Stabilized Au Metal Nanoparticles by Bottom-Up Methods 275</p> <p>10.3.1.3 NHC-Stabilized Au Metal Nanoparticles from Ionic Liquids 277</p> <p>10.3.1.4 Water-Soluble NHC-Stabilized Au Nanoparticle Syntheses 278</p> <p>10.3.2 NHC-Stabilized Au Metal Nanoparticles 280</p> <p>10.3.2.1 NHC-Stabilized Reactive Metal Nanoparticles: Iridium 282</p> <p>10.3.2.2 NHC-Stabilized Reactive Metal Nanoparticles: Ruthenium 282</p> <p>10.3.2.3 NHC-Stabilized Reactive Metal Nanoparticles: Palladium 284</p> <p>10.3.2.4 NHC-Stabilized Reactive Metal Nanoparticles: Platinum 287</p> <p>10.3.2.5 NHC-Stabilized Reactive Metal Nanoparticles: Silver 287</p> <p>10.4 Conclusions and Outlook 288</p> <p>References 289</p> <p><b>11 Supramolecular Web and Application for Chiroptical Functionalization of Polymer </b><b>297<br /></b><i>Hirotaka Ihara, Makoto Takafuji, Yutaka Kuwahara, Yutaka Okazaki, Naoya Ryu, Takashi Sagawa, and</i> <i>Reiko Oda</i></p> <p>11.1 Introduction 297</p> <p>11.2 Supramolecular Gel for Molecular Web 298</p> <p>11.2.1 What is Supramolecular Gel? 298</p> <p>11.2.2 Low Molecular Weight Tool for Supramolecular Gel Formation 299</p> <p>11.3 Chiroptical Properties of Glutamide-Based Supramolecular Gel 305</p> <p>11.3.1 Colorless and Transparent Property 305</p> <p>11.3.2 Fluorescent Property 306</p> <p>11.3.3 Phosphorescent Property 308</p> <p>11.3.4 Induction of Secondary Chirality 310</p> <p>11.3.5 Induction of Circularly Polarized Luminescence 311</p> <p>11.4 Functionalization of Polymer with Supramolecular Web 319</p> <p>11.4.1 Polymerizing Supramolecular Gel 319</p> <p>11.4.2 Introduction of Supramolecular Gel Function in the Polymer 321</p> <p>11.4.2.1 Introduction Through Bulk Polymerization 321</p> <p>11.4.2.2 Introduction of Supramolecular Web into Polymer Through Blend Method 322</p> <p>11.4.3 Development of Optical Modulator 324</p> <p>11.4.3.1 Wavelength Converter by High Storks Shift and Phosphorescence 324</p> <p>11.4.3.2 Circularly Polarized Luminescent Material 328</p> <p>11.5 Conclusions 329</p> <p>References 330</p> <p><b>12 Conformational Analysis of Organic Molecules with Single-Molecule Atomic-Resolution Real-Time Transmission Electron Microscopy (SMART-TEM) Imaging </b><b>339<br /></b><i>Koji Harano and Eiichi Nakamura</i></p> <p>12.1 Introduction 339</p> <p>12.2 Conformational Analysis 340</p> <p>12.2.1 Conformational Analysis of Single Molecules 342</p> <p>12.2.2 Alkyl Chain Passing Through a Hole 346</p> <p>12.2.3 Bond-by-Bond Analysis of the Conformation of a Perfluoroalkyl Chain 346</p> <p>12.2.4 Determination of the Conformation of the PF Chain of 6 347</p> <p>12.2.5 Orientation of Single Molecules of 1 in a CNT 350</p> <p>12.2.6 3-D Structural Information on the Pyrene Amide Molecule 352</p> <p>12.3 Images of Moving Biotin Triamide in a Vacuum 352</p> <p>12.4 Control of Molecular Motions by the Acceleration Voltage 354</p> <p>12.5 A More Complex Biotin Derivative 356</p> <p>12.6 Cross-correlation Between Experimental and Simulated TEM Images 358</p> <p>12.6.1 Stability of Single Molecules Under SMART-TEM Observation 361</p> <p>12.7 Conclusion 364</p> <p><b>Appendix 12.A Procedures for SMART-TEM Experiments 365</b></p> <p>12.A.1 Synthesis of Biotinylated CNH 10 365</p> <p>12.A.2 Sample Preparation for TEM Observation of CNH 11 366</p> <p>12.A.3 Procedure for TEM Observation in Figure L.8 366</p> <p>12.A.4 Cross-correlation Analysis of Overall Motion of Single Organic Molecules in TEM Movies 366</p> <p>References 367</p> <p><b>13 Designer Molecules Toward Sequence-Controlled Polymers via Chain-Growth Propagation Mechanism </b><b>369<br /></b><i>Makoto Ouchi</i></p> <p>13.1 Introduction 369</p> <p>13.2 Cyclopolymerization 371</p> <p>13.3 Iterative Single Unit Monomer Addition by Transformable Bulkiness 373</p> <p>13.4 Iterative Cyclization 374</p> <p>13.5 Conclusion 376</p> <p>References 377</p> <p><b>14 Hairy Particles Synthesized by Surface-Initiated Living Radical Polymerization </b><b>379<br /></b><i>Kohji Ohno</i></p> <p>14.1 Introduction 379</p> <p>14.2 Surface-Initiated Living Radical Polymerization on the Surfaces of Various Particles 380</p> <p>14.3 Precise Synthesis of Polymer-Brush-Decorated Particles 382</p> <p>14.3.1 Monodisperse Hybrid Particles 382</p> <p>14.3.2 Janus Particles Grafted with Polymer Brush 383</p> <p>14.3.3 Polymer-Brush-Grafted Hollow Particles 385</p> <p>14.3.4 Mixed Polymer Brushes on Particles 386</p> <p>14.4 Structure of Polymer Brushes on the Particle Surface 387</p> <p>14.5 Self-assembly of Hairy Particles 388</p> <p>14.5.1 Two- and Three-Dimensional Ordered Arrays 388</p> <p>14.5.2 Advantages of Semisoft Colloidal Crystals 391</p> <p>14.5.3 Self-assembly of Hairy Anisotropic Particles 392</p> <p>14.6 Conclusions 393</p> <p>References 393</p> <p>Index 399</p>
Hisashi Yamamoto is Professor at the University of Chicago. He received his Ph.D. from Harvard under the mentorship of Professor E. J. Corey. His first academic position was as Assistant Professor and lecturer at Kyoto University, and in 1977 he was appointed Associate Professor of Chemistry at the University of Hawaii. In 1980 he moved to Nagoya University where he became Professor in 1983. In 2002, he moved to United States as Professor at the University of Chicago. He has been honored to receive the Prelog Medal in 1993, the Chemical Society of Japan Award in 1995, the National Prize of Purple Medal (Japan) in 2002, Yamada Prize in 2004, and Tetrahedron Prize in 2006 and the ACS Award for Creative Work in Synthetic Organic Chemistry to name a few. He authored more than 500 papers, 130 reviews and books (h-index ~90).<br> <br> Takashi Kato is a Professor at the Department of Chemistry and Biotechnology at the University of Tokyo since 2000. After his postdoctoral research at Cornell University, Department of Chemistry with Professor Jean M. J. Frechet, he joined the University of Tokyo. He is the recipient of The Chemical Society of Japan Award for Young Chemists (1993), The Wiley Polymer Science Award (Chemistry), the 17th IBM Japan Science Award (Chemistry), the 1st JSPS (Japan Society for the Promotion of Science) Prize and the Award of Japanese Liquid Crystal Society (2008). He is the editor in chief of the "Polymer Journal", and member of the editorial board of "New Journal of Chemistry".<br>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
40,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €