Details

Modeling of Liquid Phases


Modeling of Liquid Phases


1. Aufl.

von: Michel Soustelle

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.08.2015
ISBN/EAN: 9781119178507
Sprache: englisch
Anzahl Seiten: 260

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments.</p> <p>This second volume in the set is devoted to the study of liquid phases.</p>
<p>PREFACE xi</p> <p>NOTATIONS AND SYMBOLS xv</p> <p><b>CHAPTER 1. PURE LIQUIDS 1</b></p> <p>1.1 Macroscopic modeling of liquids 1</p> <p>1.2. Distribution of molecules in a liquid 2</p> <p>1.2.1. Molecular structure of a nonassociated liquid 3</p> <p>1.2.2. The radial distribution function 4</p> <p>1.2.3 The curve representative of the radial distribution function 6</p> <p>1.2.4. Calculation of the macroscopic thermodynamic values 8</p> <p>1.3. Models extrapolated from gases or solids 9</p> <p>1.3.1. Guggenheim’s smoothed potential model 10</p> <p>1.3.2. Mie’s harmonic oscillator model 13</p> <p>1.3.3. Determination of the free volume on the basis of the dilation and the compressibility 15</p> <p>1.4. Lennard-Jones and Devonshire cellular model 16</p> <p>1.5. Cellular and vacancies model 25</p> <p>1.6. Eyring’s semi-microscopic formulation of the vacancy model 29</p> <p>1.7. Comparison between the different microscopic models and experimental results 32</p> <p><b>CHAPTER 2. MACROSCOPIC MODELING OF LIQUID MOLECULAR SOLUTIONS 37</b></p> <p>2.1. Macroscopic modeling of the Margules expansion 38</p> <p>2.2. General representation of a solution with several components 39</p> <p>2.3. Macroscopic modeling of the Wagner expansions 40</p> <p>2.3.1. Definition of the Wagner interaction coefficients 40</p> <p>2.3.2. Example of a ternary solution: experimental determination of Wagner’s interaction coefficients 41</p> <p>2.4. Dilute ideal solutions 43</p> <p>2.4.1. Thermodynamic definition of a dilute ideal solution 43</p> <p>2.4.2. Activity coefficients of a component with a pure-substance reference 44</p> <p>2.4.3. Excess Gibbs energy of an ideal dilute solution 44</p> <p>2.4.4. Enthalpy of mixing for an ideal dilute solution 45</p> <p>2.4.5. Excess entropy of a dilute ideal solution 46</p> <p>2.4.6. Molar heat capacity of an ideal dilute solution at constant pressure 46</p> <p>2.5. Associated solutions 46</p> <p>2.5.1. Example of the study of an associated solution 47</p> <p>2.5.2. Relations between the chemical potentials of the associated solution 49</p> <p>2.5.3. Calculating the extent of the equilibrium in an associated solution 50</p> <p>2.5.4. Calculating the activity coefficients in an associated solution 50</p> <p>2.5.5. Definition of a regular solution 51</p> <p>2.5.6. Strictly-regular solutions 52</p> <p>2.5.7. Macroscopic modeling of strictly-regular binary solutions 53</p> <p>2.5.8. Extension of the model of a strictly-regular solution to solutions with more than two components 56</p> <p>2.6. Athermic solutions 57</p> <p>2.6.1. Thermodynamic definition of an athermic solution 58</p> <p>2.6.2. Variation of the activity coefficients with temperature in an athermic solution 58</p> <p>2.6.3. Molar entropy and Gibbs energy of mixing for an athermic solution 58</p> <p>2.6.4. Molar heat capacity of an athermic solution 59</p> <p><b>CHAPTER 3. MICROSCOPIC MODELING OF LIQUID MOLECULAR SOLUTIONS 61</b></p> <p>3.1. Models of binary solutions with molecules of similar dimensions 62</p> <p>3.1.1. The microscopic model of a perfect solution 68</p> <p>3.1.2. Microscopic description of strictly-regular solutions 70</p> <p>3.1.3. Microscopic modeling of an ideal dilute solution 72</p> <p>3.2. The concept of local composition 74</p> <p>3.2.1. The concept of local composition in a solution 74</p> <p>3.2.2. Energy balance of the mixture 76</p> <p>3.2.3. Warren and Cowley’s order parameter 78</p> <p>3.2.4. Model of Fowler & Guggenheim’s quasi-chemical solution 80</p> <p>3.3. The quasi-chemical method of modeling solutions 87</p> <p>3.4. Difference of the molar volumes: the combination term 92</p> <p>3.4.1. Combinatorial excess entropy 92</p> <p>3.4.2. Flory’s athermic solution model 97</p> <p>3.4.3. Staverman’s corrective factor 98</p> <p>3.5. Combination of the different concepts: the UNIQUAC model 101</p> <p>3.6. The concept of contribution of groups: the UNIFAC model 107</p> <p>3.6.1. The concept of the contribution of groups 108</p> <p>3.6.2. The UNIFAC model 108</p> <p>3.6.3. The modified UNIFAC model (Dortmund) 114</p> <p>3.6.4. Use of the UNIFAC system in the UNIQUAC model 114</p> <p><b>CHAPTER 4. IONIC SOLUTIONS 117</b></p> <p>4.1. Reference state, unit of composition and activity coefficients of ionic solutions 119</p> <p>4.2. Debye and Hückel’s electrostatic model 121</p> <p>4.2.1. Presentation of the problem 122</p> <p>4.2.2. Notations 123</p> <p>4.2.3. Poisson’s equation 124</p> <p>4.2.4. Electrical potential due to the ionic atmosphere 125</p> <p>4.2.5. Debye and Hückel’s hypotheses 127</p> <p>4.2.6. Debye and Hückel’s solution for the potential due to the ionic atmosphere 132</p> <p>4.2.7. Charge and radius of the ionic atmosphere of an ion 134</p> <p>4.2.8. Excess Helmholtz energy and excess Gibbs energy due to charges 136</p> <p>4.2.9. Activity coefficients of the ions and mean activity coefficient of the solution 138</p> <p>4.2.10. Self-consistency of Debye and Hückel’s model 141</p> <p>4.2.11. Switching from concentrations to molalities 144</p> <p>4.2.12. Debye and Hückel’s law: validity and comparison with experimental data 146</p> <p>4.2.13. Debye and Hückel’s limit law 147</p> <p>4.2.14. Extensions of Debye and Hückel’s law 148</p> <p>4.3. Pitzer’s model 150</p> <p>4.4. UNIQUAC model extended to ionic solutions 155</p> <p><b>CHAPTER 5. DETERMINATION OF THE ACTIVITY OF A COMPONENT OF A SOLUTION 159</b></p> <p>5.1. Calculation of an activity coefficient when we know other coefficients 160</p> <p>5.1.1. Calculation of the activity of a component when we know that of the other components in the solution 160</p> <p>5.1.2. Determination of the activity of a component at one temperature if we know its activity at another temperature 162</p> <p>5.2. Determination of the activity on the basis of the measured vapor pressure 164</p> <p>5.2.1. Measurement by the direct method 165</p> <p>5.2.2. Method using the vaporization constant in reference II 166</p> <p>5.3. Measurement of the activity of the solvent of the basis of the colligative properties 168</p> <p>5.3.1. Use of measuring of the depression of the boiling point – ebullioscopy 168</p> <p>5.3.2. Use of measuring of the depression of the freezing point – cryoscopy 170</p> <p>5.3.3. Use of the measurement of osmotic pressure 172</p> <p>5.4. Measuring the activity on the basis of solubility measurements 173</p> <p>5.4.1. Measuring the solubilities in molecular solutions 174</p> <p>5.4.2. Measuring the solubilities in ionic solutions 174</p> <p>5.5. Measuring the activity by measuring the distribution of a solute between two immiscible solvents 176</p> <p>5.6. Activity in a conductive solution 176</p> <p>5.6.1. Measuring the activity in a strong electrolyte 176</p> <p>5.6.2. Determination of the mean activity of a weak electrolyte on the basis of the dissociation equilibrium 180</p> <p>APPENDICES 181</p> <p>APPENDIX 1 183</p> <p>APPENDIX 2 193</p> <p>APPENDIX 3 207</p> <p>BIBLIOGRAPHY 221</p> <p>INDEX 225</p>
<b>Michel SOUSTELLE</b> is a chemical engineer and Emeritus Professor at Ecole des Mines de Saint-Etienne in France. He taught chemical kinetics from postgraduate to Master degree level while also carrying out research in this topic.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €