Details

Intelligent Nanomaterials


Intelligent Nanomaterials


Advanced Material Series 2. Aufl.

von: Ashutosh Tiwari, Yogendra Kumar Mishra, Hisatoshi Kobayashi, Anthony P. F. Turner

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.10.2016
ISBN/EAN: 9781119242796
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Overall, this book presents a detailed and comprehensive overview of the state-of-the-art development of different nanoscale intelligent materials for advanced applications. Apart from fundamental aspects of fabrication and characterization of nanomaterials, it also covers key advanced principles involved in utilization of functionalities of these nanomaterials in appropriate forms. It is very important to develop and understand the cutting-edge principles of how to utilize nanoscale intelligent features in the desired fashion. These unique nanoscopic properties can either be accessed when the nanomaterials are prepared in the appropriate form, e.g., composites, or in integrated nanodevice form for direct use as electronic sensing devices. In both cases, the nanostructure has to be appropriately prepared, carefully handled, and properly integrated into the desired application in order to efficiently access its intelligent features. These aspects are reviewed in detail in three themed sections with relevant chapters: Nanomaterials, Fabrication and Biomedical Applications; Nanomaterials for Energy, Electronics, and Biosensing; Smart Nanocomposites, Fabrication, and Applications.
<p>Preface xvii</p> <p><b>Part 1 Nanomaterials, Fabrication and Biomedical Applications</b></p> <p><b>1 Electrospinning Materials for Skin Tissue Engineering 3<br /> </b><i>Beste Kinikoglu</i></p> <p>1.1 Skin Tissue Engineering Scaffolds 4</p> <p>1.2 Conclusions 14</p> <p>References 15</p> <p><b>2 Electrospinning: A Versatile Technique to Synthesize Drug Delivery Systems 21<br /> </b><i>Xueping Zhang, Dong Liu and Tianyan You</i></p> <p>2.1 Introduction 21</p> <p>2.2 The Types of Delivered Drugs 22</p> <p>2.3 Polymers Used in Electrospinning 29</p> <p>2.4 The Development of Electrospinning Process for Drug Delivery 36</p> <p>2.5 Conclusions 41</p> <p>Acknowledgment 42</p> <p>References 42</p> <p><b>3 Electrospray Jet Emission: An Alternative Interpretation Invoking Dielectrophoretic Forces 51<br /> </b><i>Francesco Aliotta, Oleg Gerasymov and Pietro Calandra</i></p> <p>3.1 Introduction 52</p> <p>3.2 Electrospray: How It Works? 54</p> <p>3.3 Historical Background 63</p> <p>3.4 How the Current (and Wrong) Description of the Electrospray Process Has Been Generated? 65</p> <p>3.5 What Is Wrong in the Current Description? 68</p> <p>3.6 Some Results Shedding More Light 70</p> <p>3.7 Discriminating between Electrophoretic and Dielectrophoretic Forces 72</p> <p>3.8 Some Theoretical Aspects of Dielectrophoresis 76</p> <p>3.9 Conclusions 83</p> <p>References 86</p> <p><b>4 Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production 91<br /> </b><i>Anita Kovač Kralj</i></p> <p>4.1 Introduction 92</p> <p>4.2 The Catalysis 93</p> <p>4.3 Case Study 95</p> <p>4.4 Limited Hybrid Catalyst Method for Formaldehyde Production 97</p> <p>4.5 Conclusion 104</p> <p>4.6 Nomenclatures 105</p> <p>References 105</p> <p><b>5 Physico-chemical Characterization and Basic Research Principles of Advanced Drug Delivery Nanosystems 107<br /> </b><i>Natassa Pippa, Stergios Pispas and Costas Demetzos</i></p> <p>5.1 Introduction 108</p> <p>5.2 Basic Research Principles and Techniques for the Physicochemical Characterization of Advanced Drug Delivery Nanosystems 108</p> <p>5.3 Conclusions 122</p> <p>References 122</p> <p><b>6 Nanoporous Alumina as an Intelligent Nanomaterial for Biomedical Applications 127<br /> </b><i>Moom Sinn Aw and Dusan Losic</i></p> <p>6.1 Introduction 127</p> <p>6.2 Nanoporous Anodized Alumina as a Drug Nano-carrier 129</p> <p>6.3 Biocompatibility of NAA and NNAA Materials 138</p> <p>6.4 NAA for Diabetic and Pancreatic Applications 143</p> <p>6.5 NAA Applications in Orthopedics 144</p> <p>6.6 NAA Applications for Heart, Coronary, and Vasculature Treatment 148</p> <p>6.7 NAA in Dentistry 150</p> <p>6.8 Conclusions and Future Prospects 152</p> <p>Acknowledgment 153</p> <p>References 154</p> <p><b>7 Nanomaterials: Structural Peculiarities, Biological Effects, and Some Aspects of Applications 161<br /> </b><i>N.F. Starodub, M.V. Taran, A.M. Katsev, C. Bisio and M. Guidotti</i></p> <p>7.1 Introduction 162</p> <p>7.2 Physicochemical Properties Determining the Bioavailability and Toxicity of NPS 164</p> <p>7.3 Current Nanoecotoxicological Knowledge 168</p> <p>7.4 Modern Direction of the Application of Nanocomposites as Basis for Detoxication Process 187</p> <p>7.5 Conclusions 189</p> <p>Acknowledgments 190</p> <p>References 190</p> <p><b>8 Biomedical Applications of Intelligent Nanomaterials 199<br /> </b><i>M. D. Fahmy, H. E. Jazayeri, M. Razavi, M. Hashemi, M. Omidi, M. Farahani, E. Salahinejad, A. Yadegari, S. Pitcher and Lobat Tayebi</i></p> <p>8.1 Introduction 200</p> <p>8.2 Polymeric Nanoparticles 202</p> <p>8.3 Lipid-based Nanoparticles 206</p> <p>8.4 Carbon Nanostructures 213</p> <p>8.5 Nanostructured Metals 219</p> <p>8.6 Hybrid Nanostructures 223</p> <p>8.7 Concluding Remarks 228</p> <p>References 229</p> <p><b>Part 2 Nanomaterials for Energy, Electronics, and Biosensing</b></p> <p><b>9 Phase Change Materials as Smart Nanomaterials for Thermal Energy Storage in Buildings 249<br /> </b><i>M. Kheradmand, M. Abdollahzadeh, M. Azenha and J.L.B. de Aguiar</i></p> <p>9.1 Introduction 250</p> <p>9.2 Phase Change Materials: Definition, Principle of Operation, and Classifications 252</p> <p>9.3 PCM-enhanced Cement-based Materials 254</p> <p>9.4 Hybrid PCM for Thermal Storage 255</p> <p>9.5 Numerical Simulations 267</p> <p>9.6 Thermal Modeling of Phase Change 269</p> <p>9.7 Nanoparticle-enhanced Phase Change Material 280</p> <p>9.8 Conclusions (General Remarks) 288</p> <p>References 289</p> <p><b>10 Nanofluids with Enhanced Heat Transfer Properties for Thermal Energy Storage 295<br /> </b><i>Manila Chieruzzi, Adio Miliozzi, Luigi Torre and José Maria Kenny</i></p> <p>10.1 Introduction 296</p> <p>10.2 Thermal Energy Storage 298</p> <p>10.3 Nanofluids for Thermal Energy Storage 313</p> <p>10.4 Nanofluids Based on Molten Salts: Enhancement of Thermal Properties 330</p> <p>10.5 Conclusions 349</p> <p>References 351</p> <p><b>11 Resistive Switching of Vertically Aligned Carbon Nanotubes for Advanced Nanoelectronics Devices 361<br /> </b><i>O.A. Ageev, Yu. F. Blinov, M.V. Il’ina, B.G. Konoplev and V.A. Smirnov</i></p> <p>11.1 Introduction 362</p> <p>11.2 Theoretical Description of Resistive Switching Mechanism of Structures Based on VACNT 363</p> <p>11.3 Techniques for Measuring the Electrical Resistivity and Young’s Modulus of VACNT Based on Scanning Probe Microscopy 377</p> <p>11.4 Experimental Studies of Resistive Switching in Structures Based on VACNT Using Scanning Tunnel Microscopy 384</p> <p>References 391</p> <p><b>12 Multi-objective Design of Nanoscale Double Gate MOSFET Devices Using Surrogate Modeling and Global Optimization 395</b><br /> <i>T. Bentrcia, F. Djeffal and E. Chebaki</i></p> <p>12.1 Introduction 396</p> <p>12.2 Downscaling Parasitic Effects 400</p> <p>12.3 Modeling Framework 405</p> <p>12.4 Simulation and Results 412</p> <p>12.5 Concluding Remarks 422</p> <p>References 422</p> <p><b>13 Graphene-based Electrochemical Biosensors: New Trends and Applications 427<br /> </b><i>Georgia-Paraskevi Nikoleli, Stephanos Karapetis, Spyridoula Bratakou, Dimitrios P. Nikolelis, Nikolaos Tzamtzis and Vasillios N. Psychoyios</i></p> <p>13.1 Introduction 428</p> <p>13.2 Scope of This Review 429</p> <p>13.3 Graphene and Sensors 430</p> <p>13.4 Graphene Nanomaterials Used in Electrochemical (Bio)sensors Fabrication 430</p> <p>13.5 Graphene-based Enzymatic Electrodes 432</p> <p>13.6 Graphene-based Electrochemical DNA Sensors 437</p> <p>13.7 Graphene-based Electrochemical Immunosensors 439</p> <p>13.8 Commercial Activities in the Field of Graphene Sensors 442</p> <p>13.9 Recent Developments in the Field of Graphene Sensors 442</p> <p>13.10 Conclusions and Future Prospects 443</p> <p>Acknowledgments 445</p> <p>References 445</p> <p><b>Part 3 Smart Nanocomposites, Fabrication, and Applications</b></p> <p><b>14 Carbon Fibers-based Silica Aerogel Nanocomposites 451<br /> </b><i>Agnieszka Ślosarczyk</i></p> <p>14.1 Introduction to Nanotechnology 451</p> <p>14.2 Chemistry of Sol–gel Process 454</p> <p>14.3 Types of Silica Aerogel Nanocomposites 462</p> <p>14.4 Carbon Fiber-based Silica Aerogel Nanocomposites 476</p> <p>14.5 Conclusions 493</p> <p>References 494</p> <p><b>15 Hydrogel–carbon Nanotubes Composites for Protection of Egg Yolk Antibodies 501<br /> </b><i>Bellingeri Romina, Alustiza Fabrisio, Picco Natalia, Motta Carlos, Grosso Maria C, Barbero Cesar, Acevedo Diego and Vivas Adriana</i></p> <p>15.1 Introduction 502</p> <p>15.2 Polymeric Hydrogels 504</p> <p>15.3 Carbon Nanotubes 507</p> <p>15.4 Polymer–CNT Composites 511</p> <p>15.5 Egg Yolk Antibodies Protection 515</p> <p>15.6 In Vitro Evaluation of Nanocomposite Performance 517</p> <p>15.7 In Vivo Evaluation of Nanocomposite Performance 518</p> <p>15.8 Concluding Remarks and Future Trends 521</p> <p>References 522</p> <p><b>16 Green Fabrication of Metal Nanoparticles 533<br /> </b><i>Anamika Mubayi, Sanjukta Chatterji and Geeta Watal</i></p> <p>16.1 Introduction 533</p> <p>16.2 Development of Herbal Medicines 535</p> <p>16.3 Green Synthesis of Nanoparticles 536</p> <p>16.4 Characterization of Phytofabricated Nanoparticles 539</p> <p>16.5 Impact of Plant-mediated Nanoparticles on Therapeutic Efficacy of Medicinal Plants 540</p> <p>16.6 Conclusions 550</p> <p>References 551</p>
<p><b>Ashutosh Tiwari</b> is Secretary General, International Association of Advanced Materials; Chairman and Managing Director of Tekidag AB (Innotech); Associate Professor and Group Leader, Smart Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre, IFM-Linköping University; Editor-in-Chief, Advanced Materials Letters; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden.</p> <p><b>Yogendra Kumar Mishra</b> is the Group Leader at Functional Nanomaterials, Institute for Materials Science, University of Kiel, Germany.</p> <p><b>Hisatoshi Kobayashi</b> is a group leader of WPI Research center MANA, National Institute for Material Science, Tsukuba Japan.</p> <p><b>Anthony (Tony) Turner's</b> name is synonymous with the field of Biosensors. In November 2010, he joined Linköping University to create a new Centre for Biosensors and Bioelectronics.</p>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
Preis: 88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
Preis: 91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
Preis: 110,99 €