Details

Microbes Based Approaches for the Management of Hazardous Contaminants


Microbes Based Approaches for the Management of Hazardous Contaminants


1. Aufl.

von: Ajay Kumar, Livleen Shukla, Joginder Singh, Luiz Fernando Romanholo Ferreira

165,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.07.2024
ISBN/EAN: 9781119851134
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn the various microbiological aspects one deals with in environment management and the remediation of toxic contaminants in the environment</b> <p>In recent years, the accumulation of hazardous contaminants has caused a broad-based deterioration in global environmental quality. These have had wide-ranging negative social impacts, affecting climate, soil and water ecosystems, and more. As traditional methods of contaminant mitigation have proven inadequate to the task, microbial-based remediation offers the clearest, most environmentally friendly path forward for this crucial aspect of global environmental stewardship. <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants </i>offers comprehensive coverage of novel and indigenous microbes and their applications in contaminant mitigation. Surveying all the major microbial products and methods for degrading and remediating hazardous pollutants, it offers a key tool in the fight against global environmental degradation. The result is a cutting-edge introduction to an essential subject. <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants </i>will also find: <ul><li>Current and future approaches to microbial degradation </li><li>Detailed discussion of biofilms, exopolysaccharides, enzymes, metabolites, and many more </li><li>Coverage of metabolic engineering as an alternative strategy </li></ul> <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants</i> is ideal for those working in the field for the application of microbes in the remediation of hazardous pollutants and environment management, particularly those interested in environmental sciences, microbiology and microbial technology, environmental biotechnology, and molecular biology.
<p>List of Contributors xix</p> <p>Preface xxvii</p> <p><b>1 Mycobial Nanotechnology in Bioremediation of Wastewater 1<br /> </b><i>Vikanksha Thakur, Arun Kumar, and Jatinder Singh</i></p> <p>1.1 Fungi 1</p> <p>1.2 Nanotechnology Aspects 2</p> <p>1.3 The Production of Nanoparticles Using an Origin of Fungi 2</p> <p>1.4 Categories and Characteristics of Synthesized Nanoparticles 4</p> <p>1.5 Various Usage of Nanomaterials 6</p> <p>1.6 Mycobial Bioremediation of Heavy Metals from Wastewater 7</p> <p>1.7 Benefits of Mycobial Bioremediation 8</p> <p>1.8 Constraints of Mycobial Bioremediation 9</p> <p>1.9 Conclusion and Future Prospects 9</p> <p>References 9</p> <p><b>2 Microbial Enzymes in Biodegradation of Organic Pollutants: Mechanisms and Applications 12<br /> </b><i>Bharati Lap, Ashim Debnath, Gourav Kumar Singh, Priyank Chaturvedi, Joy Kumar Dey, and Sajal Saha</i></p> <p>2.1 Introduction 12</p> <p>2.2 Conclusion 18</p> <p>References 18</p> <p><b>3 Microbe Assisted Remediation of Xenobiotics: A Sustainable Solution 20<br /> </b><i>Azha Ufaq Nabi, Faamiya Shajar, and Reiaz Ul Rehman</i></p> <p>3.1 Introduction 20</p> <p>3.2 Bioremediation 24</p> <p>3.3 Environmental Factors 25</p> <p>3.4 <i>Ex Situ</i> Bioremediation Strategies 27</p> <p>3.5 Genetic Engineering Approaches 28</p> <p>3.6 The Beneficial Role of Microbes in Degradation of Different Pollutants 29</p> <p>3.7 Mechanism of Heavy Metal Detoxification by Microbes 30</p> <p>3.8 Intracellular Sequestration 30</p> <p>3.9 Extracellular Sequestration 30</p> <p>3.10 Reduction of Heavy Metal Ions by Microbial Cell 31</p> <p>3.11 The Degradation Mechanism of the Complex Dye Structure by Microbes 31</p> <p>3.12 In Domestic and Agricultural Lignocellulose Wastes Remediation 33</p> <p>3.13 Conclusion 34</p> <p>References 34</p> <p><b>4 Bioremediation Strategies as Sustainable Bio-Tools for Mitigation of Emerging Pollutants 42<br /> </b><i>Hamza Rafeeq, Zainab Riaz, Anum Shahzadi, Shazaf Gul, Fatima Idress, Sidra Ashraf, and Asim Hussain</i></p> <p>4.1 Introduction 42</p> <p>4.2 Bioremediation by Microbial Strains 43</p> <p>4.3 Factors Affecting Microbial Bioremediation 44</p> <p>4.4 Classification of Bioremediations 46</p> <p>4.5 Bioremediation of Various Pollutants 50</p> <p>4.6 Recent Advancement and Challenges in Bioremediation 53</p> <p>4.7 Advantages and Disadvantages 57</p> <p>4.8 Conclusion 58</p> <p>4.9 Future Perspective 58</p> <p>References 58</p> <p><b>5 How Can Plant-microbe Interactions be used for the Bioremediation of Metals in Water Bodies? 65<br /> </b><i>Gabriela Petroceli-Mota, Emilane Pinheiro da Cruz Lima, Mariana Miranda de Abreu, Glacielen Ribeiro de Souza, Jussara Tamires de Souza Silva, Gabriel Quintanilha-Peixoto, Alessandro Coutinho Ramos, Rachel Ann Hauser-Davis, and Aline Chaves Intorne</i></p> <p>5.1 Water Contamination Issues 65</p> <p>5.2 Metal Contamination Effects 66</p> <p>5.3 Metal Bioremediation 69</p> <p>5.4 Aquatic Macrophytes in Metal Phytoremediation Processes 70</p> <p>5.5 Microorganisms in Metal Remediation 72</p> <p>5.6 Interaction Between Aquatic Macrophytes and Microorganisms 74</p> <p>5.7 Conclusion 76</p> <p>References 76</p> <p><b>6 Extremophilic Microorganisms for Environmental Bioremediation 82<br /> </b><i>Nazim Hussain, Mehvish Mumtaz, Warda Perveez, and Hafsa</i></p> <p>6.1 Introduction 82</p> <p>6.2 Extremophiles 82</p> <p>6.3 Extremophilic Microorganisms Under Extreme Conditions 83</p> <p>6.4 Extremophiles Applications for Environmental Bioremediation 90</p> <p>6.5 Bioremediation of Petroleum Product 92</p> <p>6.6 Conclusion and Future Perspective 99</p> <p>References 99</p> <p><b>7 Bacterial/Fungal Inoculants: Application as Bio Stimulants 108<br /> </b><i>V. Mamtha, Swati, K. Sowmiya, and Haralakal Keerthi Kumari</i></p> <p>7.1 Introduction 108</p> <p>7.2 Arbuscular Mycorrhizal Fungi (AMF) 111</p> <p>7.3 Conclusion 114</p> <p>References 114</p> <p><b>8 Microbial Inoculants and Their Potential Application in Bioremediation: Emphasis on Agrochemicals 118<br /> </b><i>Shriniketan Puranik, Kallinkal Sobha Sruthy, Menpadi Manoj, Konaghatta Vijayakumar Vikram, Praveen Karijadar, Sandeep Kumar Singh, and Livleen Shukla</i></p> <p>8.1 Introduction 118</p> <p>8.2 Pollution of Different Matrices by Agrochemicals 119</p> <p>8.3 Different Strategies Employed in Bioremediation 122</p> <p>8.4 Microbe-Mediated Bioremediation and Recent Advances 127</p> <p>8.5 Novel Enzymes or Genes Involved in Bioremediation of Pollutants 131</p> <p>8.6 Conclusion 135</p> <p>References 135</p> <p><b>9 Porous Nanomaterials for Enzyme Immobilization and Bioremediation Applications 146<br /> </b><i>Nazim Hussain, Areej Shahbaz, Hafiza Ayesha Malik, Farhana Ehsan, José Cleiton Sousa dos Santos, and Aldona Balčiūnaitė</i></p> <p>9.1 Introduction 146</p> <p>9.2 Enzyme Immobilization 147</p> <p>9.3 Model Enzymes With Multifunctional Attributes 149</p> <p>9.4 Supports for Enzyme Immobilization 150</p> <p>9.5 Inorganic Materials as Support Matrices 150</p> <p>9.6 Organic Materials as Support Matrices 152</p> <p>9.7 Synthetic Polymers as Support Matrices 152</p> <p>9.8 Nanomaterials as Supports for Enzyme Immobilization 153</p> <p>9.9 Porous Nanomaterials as Supports for Enzyme Immobilization 154</p> <p>9.10 Advantages of Enzyme Immobilization 154</p> <p>9.11 Metal–Organic Frameworks as Supports for Enzyme Immobilization 155</p> <p>9.12 Bioremediation Applications of Enzyme Immobilized Porous Nanomaterials 156</p> <p>9.13 Future Directions 156</p> <p>9.14 Conclusion 157</p> <p>References 157</p> <p><b>10 Effects of Microbial Inoculants on Soil Nutrients and Microorganisms 162<br /> </b><i>D. Vijaysri, Konderu Niteesh Varma, Haralkal Keerthi Kumari, D. Sai Srinivas, S.T.M. Aravindharajan, Dilbag Singh, Livleen Shukla, T. Kavya, and Sandeep Kumar Singh</i></p> <p>10.1 Introduction 162</p> <p>10.2 Microbial Inoculants and Soil Nutrients 163</p> <p>10.3 Influence of Microbial Inoculants on Soil Nutrient Quality 163</p> <p>10.4 Impact of Microbial Inoculants on Natural Soil Microbial Communities 166</p> <p>10.5 Microbial Inoculants: Mechanisms Involved in Affecting the Resident Microbial Community 166</p> <p>10.6 Effect of Monoinoculation Versus Coinoculation 167</p> <p>10.7 Conclusion 168</p> <p>References 168</p> <p><b>11 Bacterial Treatment of Industrial Wastewaters: Applications and Challenges 171<br /> </b><i>Christina Saran, Anuradha Devi, Ganesh Dattatraya Saratale, Rijuta Ganesh Saratale, Luiz Fernando R. Ferreira, Sikandar I. Mulla, and Ram Naresh Bharagava</i></p> <p>11.1 Introduction 171</p> <p>11.2 Composition and Nature of Various Industrial Wastewater 172</p> <p>11.3 Role of Bacteria in Biodegradation of Specific Pollutant Found in Wastewater 174</p> <p>11.4 Different Approaches and Mechanism of Bacterial Bioremediation in Industrial Wastewater 177</p> <p>11.5 Factors Influencing Bacterial Degradation Efficiency 182</p> <p>11.6 Conclusion and Future Prospects 185</p> <p>References 185</p> <p><b>12 Sustainable Algal Industrial Wastewater Treatment: Applications and Challenges 190<br /> </b><i>Anuradha Devi, Christina Saran, Ganesh Dattatraya Saratale, Rijuta Ganesh Saratale, Luiz Fernando R. Ferreira, Sikandar I. Mulla, and Ram Naresh Bharagava</i></p> <p>12.1 Introduction 190</p> <p>12.2 Characteristics and Composition of Industrial Wastewater (IWW) 191</p> <p>12.3 Perks of Microalgae in Wastewater Treatment (WWT) 193</p> <p>12.4 Cultivation System for IWW Treatment 194</p> <p>12.5 Algal Nutrient Uptake Mechanisms 195</p> <p>12.6 Bioremediation of Industrial Effluents 198</p> <p>12.7 Recovery of Valuable Nutrients 200</p> <p>12.8 Future Directions and Research Frontiers 201</p> <p>12.9 Conclusion 202</p> <p>References 202</p> <p><b>13 Immobilization of Microbial Inoculants for Improving Soil Nutrient Bioavailability 206<br /> </b><i>Swati, V. Mamtha, and Haralakal Keerthi Kumari</i></p> <p>13.1 Introduction 206</p> <p>13.2 History of Immobilization 207</p> <p>13.3 Support Material Selection 207</p> <p>13.4 Support Materials Used for Immobilization of Microbes 207</p> <p>13.5 Conclusion 211</p> <p>References 211</p> <p><b>14 Insight Into the Factors Inhibiting the Anammox Process in Wastewater 213<br /> </b><i>Surbhi Sinha, Anamika Singh, and Rachana Singh</i></p> <p>14.1 Introduction 213</p> <p>14.2 Substrate Inhibition 214</p> <p>14.3 Heavy Metals Inhibition 214</p> <p>14.4 Organic Matter Inhibition 215</p> <p>14.5 Salinity Inhibition 216</p> <p>14.6 Microplastic Inhibition 216</p> <p>14.7 Nanoparticle (NPs) Inhibition 217</p> <p>14.8 Control Strategies 217</p> <p>14.9 Conclusion and Prospects 220</p> <p>References 220</p> <p><b>15 Chitinolytic Microbes for Pest Management in Organic Agriculture: Challenges and Strategies 224<br /> </b><i>Vikram Poria, Sandeep Kumar, Babett Greff, Pawan Kumar, Prakriti Jhilta, Balkar Singh, and Surender Singh</i></p> <p>15.1 Introduction 224</p> <p>15.2 Alternatives to Agrochemicals in Organic Agriculture for Pest Management 225</p> <p>15.3 Pest Management in Organic Agriculture Using Chitinolytic Microbial Agents 228</p> <p>15.4 Challenges Associated With the Use of Chitinolytic Microorganisms 230</p> <p>15.5 Strategies for Sustainable Use of Chitinolytic Microorganisms in Organic Agriculture 232</p> <p>15.6 Conclusion and Prospects 233</p> <p>Acknowledgments 233</p> <p>References 234</p> <p><b>16 Microbial Bioremediation of Metals and Radionuclides: Approaches and Advancements 242<br /> </b><i>Sobia Riaz, Muhammad Sohail, and Rashba Sahar</i></p> <p>16.1 Introduction 242</p> <p>16.2 Sources and Effects of Heavy Metals 243</p> <p>16.3 Biotic and Abiotic Factors Affecting Microbial Bioremediation 244</p> <p>16.4 Approaches for Bioremediation of Heavy Metals Through Microbial Processes: An Introduction 245</p> <p>16.5 Approaches for the Bioremediation of Radionuclide 247</p> <p>16.6 Novel Technologies in Bioremediation 249</p> <p>16.7 Future Perspectives and Conclusions 250</p> <p>References 251</p> <p><b>17 Chapter Role of Microbial Biofilms in Bioremediation: Current Perspectives 257<br /> </b><i>Sahaya Nadar and Tabassum Khan</i></p> <p>17.1 Introduction 257</p> <p>17.2 Formation of Biofilm 258</p> <p>17.3 Microbes Forming Biofilm 259</p> <p>17.4 Biofilms in Bioremediation 261</p> <p>17.5 Emerging Opportunities 264</p> <p>17.6 Challenges in Bioremediation Using Biofilms 266</p> <p>17.7 Conclusions 266</p> <p>References 267</p> <p><b>18 Green Nanoparticles for Textile Wastewater Treatment: The Current Insights 277<br /> </b><i>Irfan Haidri, Aneeza Ishfaq, Muhammad Shahid, Tanvir Shahzad, Sabir Hussain, and Faisal Mahmood</i></p> <p>18.1 Introduction 277</p> <p>18.2 Sources and Composition of Textile Wastewater 278</p> <p>18.3 Environmental Effects of Textile Wastewater 278</p> <p>18.4 Nanotechnology in Environmental Pollution Remediation 278</p> <p>18.5 Types of Biologically Synthesized Nanoparticles Used in the Treatment of Textile Wastewater 279</p> <p>18.6 Green Synthesis Methods 280</p> <p>18.7 Treatment of Textile Wastewater by Different Process 283</p> <p>18.8 Degradation of Dyes by Green Synthesized Nanoparticles 285</p> <p>18.9 Removal Efficiency of Green Synthesized Nanoparticles for the Treatment of Textile Wastewater 285</p> <p>18.10 Toxicity and Safety Considerations for the Treatment of Textile Wastewater Using Green Synthesized Nanoparticles 286</p> <p>18.11 Cost-effectiveness 287</p> <p>18.12 Challenges and Limitations 287</p> <p>18.13 Future Trends and Research Directions 288</p> <p>18.14 Conclusion 288</p> <p>References 288</p> <p><b>19 Microbial Inoculants: Application in the Management of Metal Stress 293<br /> </b><i>Poulomi Ghosh and Saprativ P. Das</i></p> <p>19.1 Introduction 293</p> <p>19.2 Microbial Inoculants 293</p> <p>19.3 Factors Influencing Microbial Inoculants’ Efficacy 295</p> <p>19.4 Sources of Heavy Metals 298</p> <p>19.5 Effects of Heavy Metals 300</p> <p>19.6 Microbial Mechanisms of Metal Tolerance and Remediation 302</p> <p>19.7 Other Remediation Approaches 304</p> <p>19.8 Metal Remediation in Co-contaminated Soils 305</p> <p>19.9 Concomitant Strategies for Metal Stress Management 306</p> <p>19.10 Challenges, Impending Visions, and Conclusions 308</p> <p>References 309</p> <p><b>20 Harnessing In Silico Techniques for Bioremediation Solutions 312<br /> </b><i>Nischal Pradhan and Ajay Kumar</i></p> <p>20.1 Introduction 312</p> <p>20.2 Emergence of In Silico Approaches 313</p> <p>20.3 Genome-Scale Models 314</p> <p>20.4 Molecular Modeling 315</p> <p>20.5 QSAR Models 316</p> <p>20.6 Metabolic Modeling for Engineering Microbes 317</p> <p>20.7 Development of In Silico Platforms for Bioremediation Research 318</p> <p>20.8 Challenges and Limitations 318</p> <p>20.9 Conclusion 319</p> <p>References 319</p> <p><b>21 Microbial Inoculants and Their Potential Application in Bioremediation 321<br /> </b><i>Ankita Agrawal, Jitesh Kumar Maharana, and Amiya Kumar Patel</i></p> <p>21.1 Introduction 321</p> <p>21.2 Overview of Bioremediation 322</p> <p>21.3 Microbial Inoculants: Concept and Types 325</p> <p>21.4 Mode of Action of Microbial Inoculants in Bioremediation 328</p> <p>21.5 Applications of Microbial Inoculants 329</p> <p>21.6 Process Optimization for Enhanced Bioremediation 330</p> <p>21.7 Challenges and Future Prospects of Microbial Inoculants 331</p> <p>21.8 Ecological Consequences 331</p> <p>21.9 Assessment and Implementation of Microbial Inoculants 332</p> <p>21.10 Case Studies and Success of Restoration Efforts 333</p> <p>21.11 Conclusion 336</p> <p>21.12 Future Perspectives 336</p> <p>Acknowledgment 336</p> <p>References 337</p> <p><b>22 Microbial Inoculant Approaches for Disease Management 345<br /> </b><i>S.T.M. Aravindharajan, Sivaprakasam Navarasu, Velmurugan Shanmugam, S.S. Deepti Varsha, D. Vijaysri, Sandeep Kumar Singh, and Livleen Shukla</i></p> <p>22.1 Introduction 345</p> <p>22.2 Approaches of Various Microbial Inoculants for Controlling the Economically Important Disease 346</p> <p>22.3 Central Role of Micro Organisms to Induced the Innate Immunity 351</p> <p>22.4 Synthetic Microbial Communities in Plant Disease Management 355</p> <p>22.5 Recent Trends of Biocontrol Agent 356</p> <p>22.6 Conclusion 357</p> <p>References 358</p> <p><b>23 Impact of Microbial Inoculants on the Secondary Metabolites Production of Medicinal Plants 367<br /> </b><i>Haralakal Keerthi Kumari, D. Vijaysri, T. Chethan, Swati, and V. Mamtha</i></p> <p>23.1 Introduction 367</p> <p>23.2 Biosynthesis of Plant Secondary Phytochemicals and Their Classification 367</p> <p>23.3 General Mechanism of Microbial Inoculants-Induced Production of Secondary Compounds 369</p> <p>23.4 Determinants of Secondary Phytochemical Synthesis 370</p> <p>23.5 Ideal Characteristics of Microbial Inoculants 370</p> <p>23.6 Fungi 370</p> <p>23.7 Mechanism of Fungal Elicitors 371</p> <p>23.8 Advantages of Microbial Inoculants over Chemical Inoculants for Metabolite Production 374</p> <p>23.9 Applications of Plant Secondary Metabolites 374</p> <p>23.10 Conclusion 374</p> <p>References 375</p> <p><b>24 Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons 378<br /> </b><i>Fahad S. Alotaibi, Abdullah Alrajhi, and Saif Alharbi</i></p> <p>24.1 Introduction 378</p> <p>24.2 Polycyclic Aromatic Hydrocarbons (PAHs): Sources, Pollution, and Exposure Routes 379</p> <p>24.3 Biodegradation Pathways 380</p> <p>24.4 Challenges and Future Directions 384</p> <p>List of Abbreviations 385</p> <p>References 385</p> <p><b>25 Microbial Indicators for Monitoring Pollution and Bioremediation 390<br /> </b><i>Vijay Kumar, Ashok Chhetri, Joy Kumar Dey, and Ashim Debnath</i></p> <p>25.1 Introduction 390</p> <p>25.2 Biosensors for Microbial Remediation 393</p> <p>References 394</p> <p><b>26 PGPRs: Toward a Better Greener Future in Sustainable Agriculture 397<br /> </b><i>Soham Das, V.H.S. Vaishnavee, Anshika Dedha, Priya Yadav, Rahul Prasad Singh, and Ajay Kumar</i></p> <p>26.1 Introduction 397</p> <p>26.2 Brief Introduction of PGPRs 398</p> <p>26.3 Role of PGPRs 398</p> <p>26.4 Social and Economic Impact of PGPRs 404</p> <p>26.5 Challenges, Future Perspectives and Conclusion 405</p> <p>References 406</p> <p><b>27 Role of MATE Transporters in Xenobiotics Tolerance 411<br /> </b><i>Arathi Radhakrishnan, Shakshi, Raj Nandini, Ajay Kumar, Raj Kishor Kapardar, and Rajpal Srivastav</i></p> <p>27.1 Introduction 411</p> <p>27.2 Degradation and Management of Xenobiotics 411</p> <p>27.3 Role of MATE in Xenobiotics’ Extrusion and Metabolism 413</p> <p>27.4 OMIC-Based Analysis for Xenobiotics Degradation and Metabolism 416</p> <p>27.5 Conclusive Remarks 417</p> <p>Acknowledgments 417</p> <p>References 417</p> <p>Index 421</p>
<p><b>Ajay Kumar, PhD,</b> is currently working as an assistant professor at Amity Institute of Biotechnology, Amity University, Noida, India. <p><b>Livleen Shukla, PhD,</b> is currently working as Principal Scientist at the Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India. <p><b>Joginder Singh, PhD,</b> is working as a Professor at the Department of Botany, Nagaland University, Nagaland, India. <p><b>Luiz Fernando R. Ferreira, PhD,</b> is an Associate Professor at the Catholic University of Brassilia, Brasilia, Brazil, focused on Environmental Engineering, Microbiotechnology, Biotechnology, and Biomedical Engineering.
<p><b>Learn the various microbiological aspects one deals with in environment management and the remediation of toxic contaminants in the environment</b> <p>In recent years, the accumulation of hazardous contaminants has caused a broad-based deterioration in global environmental quality. These have had wide-ranging negative social impacts, affecting climate, soil and water ecosystems, and more. As traditional methods of contaminant mitigation have proven inadequate to the task, microbial-based remediation offers the clearest, most environmentally friendly path forward for this crucial aspect of global environmental stewardship. <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants </i>offers comprehensive coverage of novel and indigenous microbes and their applications in contaminant mitigation. Surveying all the major microbial products and methods for degrading and remediating hazardous pollutants, it offers a key tool in the fight against global environmental degradation. The result is a cutting-edge introduction to an essential subject. <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants </i>will also find: <ul><li>Current and future approaches to microbial degradation </li><li>Detailed discussion of biofilms, exopolysaccharides, enzymes, metabolites, and many more </li><li>Coverage of metabolic engineering as an alternative strategy </li></ul> <p><i>Microbes Based Approaches for the Management of Hazardous Contaminants</i> is ideal for those working in the field for the application of microbes in the remediation of hazardous pollutants and environment management, particularly those interested in environmental sciences, microbiology and microbial technology, environmental biotechnology, and molecular biology.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
Preis: 136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
Preis: 136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
Preis: 99,99 €