Details

Fundamentals of Ship Hydrodynamics


Fundamentals of Ship Hydrodynamics

Fluid Mechanics, Ship Resistance and Propulsion
1. Aufl.

von: Lothar Birk

110,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.04.2019
ISBN/EAN: 9781118855553
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion</b></p> <p>Lothar Birk, University of New Orleans, USA</p> <p><b> </b></p> <p><b><i>Bridging the information gap between fluid mechanics and ship hydrodynamics</i></b></p> <p> </p> <p><i>Fundamentals of Ship Hydrodynamics</i> is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained.</p> <p>The book is subdivided into sixty chapters, providing background material for individual lectures.  The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace.</p> <p> </p> <p>Key features:</p> <p>•             Covers the range from basic fluid mechanics to applied ship hydrodynamics.</p> <p>•             Subdivided into 60 succinct chapters.</p> <p>•             In-depth coverage of material enables self-study.</p> <p>•             Around 250 figures and tables.</p> <p> </p> <p><i>Fundamentals of Ship Hydrodynamics</i> is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.</p>
<p>List of Figures xvii</p> <p>List of Tables xxvii</p> <p>Preface xxxi</p> <p>Acknowledgments xxxv</p> <p>About the Companion Website xxxvii</p> <p><b>1 Ship Hydrodynamics 1 </b></p> <p>1.1 Calm Water Hydrodynamics 1</p> <p>1.2 Ship Hydrodynamics and Ship Design 6</p> <p>1.3 Available Tools 7</p> <p><b>2 Ship Resistance 10 </b></p> <p>2.1 Total Resistance 10</p> <p>2.2 Phenomenological Subdivision 11</p> <p>2.3 Practical Subdivision 12</p> <p>2.3.1 Froude's hypothesis 14</p> <p>2.3.2 ITTC's method 15</p> <p>2.4 Physical Subdivision 17</p> <p>2.4.1 Body forces 18</p> <p>2.4.2 Surface forces 18</p> <p>2.5 Major Resistance Components 20</p> <p><b>3 Fluid and Flow Properties 26 </b></p> <p>3.1 A Word on Notation 26</p> <p>3.2 Fluid Properties 29</p> <p>3.2.1 Properties of water 29</p> <p>3.2.2 Properties of air 31</p> <p>3.2.3 Acceleration of free fall 32</p> <p>3.3 Modeling and Visualizing Flow 32</p> <p>3.4 Pressure 35</p> <p><b>4 Fluid Mechanics and Calculus 41</b></p> <p>4.1 Substantial Derivative 41</p> <p>4.2 Nabla Operator and Its Applications 44</p> <p>4.2.1 Gradient 44</p> <p>4.2.2 Divergence 45</p> <p>4.2.3 Rotation 47</p> <p>4.2.4 Laplace operator 48</p> <p><b>5 Continuity Equation 50 </b></p> <p>5.1 Mathematical Models of Flow 50</p> <p>5.2 Infinitesimal Fluid Element Fixed in Space 51</p> <p>5.3 Finite Control Volume Fixed in Space 54</p> <p>5.4 Infinitesimal Element Moving With the Fluid 55</p> <p>5.5 Finite Control Volume Moving With the Fluid 55</p> <p>5.6 Summary 56</p> <p><b>6 Navier-Stokes Equations 59</b></p> <p>6.1 Momentum 59</p> <p>6.2 Conservation of Momentum 60</p> <p>6.2.1 Time rate of change of momentum 60</p> <p>6.2.2 Momentum flux over boundary 60</p> <p>6.2.3 External forces 63</p> <p>6.2.4 Conservation of momentum equations 65</p> <p>6.3 Stokes' Hypothesis 66</p> <p>6.4 Navier-Stokes Equations for a Newtonian Fluid 67</p> <p><b>7 Special Cases of the Navier-Stokes Equations 71</b></p> <p>7.1 Incompressible Fluid of Constant Temperature 71</p> <p>7.2 Dimensionless Navier-Stokes Equations 75</p> <p><b>8 Reynolds Averaged Navier-Stokes Equations (RANSE) 82</b></p> <p>8.1 Mean and Turbulent Velocity 82</p> <p>8.2 Time Averaged Continuity Equation 84</p> <p>8.3 Time Averaged Navier-Stokes Equations 87</p> <p>8.4 Reynolds Stresses and Turbulence Modeling 89</p> <p><b>9 Application of the Conservation Principles 94</b></p> <p>9.1 Body in a Wind Tunnel 94</p> <p>9.2 Submerged Vessel in an Unbounded Fluid 99</p> <p>9.2.1 Conservation of mass 100</p> <p>9.2.2 Conservation of momentum 102</p> <p><b>10 Boundary Layer Theory 106</b></p> <p>10.1 Boundary Layer 106</p> <p>10.1.1 Boundary layer thickness 107</p> <p>10.1.2 Laminar and turbulent flow 108</p> <p>10.1.3 Flow separation 110</p> <p>10.2 Simplifying Assumptions 111</p> <p>10.3 Boundary Layer Equations 115</p> <p><b>11 Wall Shear Stress in the Boundary L Wall Shear Stress in the Boundary Layer 118</b></p> <p>11.1 Control Volume Selection 118</p> <p>11.2 Conservation of Mass in the Boundary Layer 119</p> <p>11.3 Conservation of Momentum in the Boundary Layer 121</p> <p>11.3.1 Momentum flux over boundary of control volume 122</p> <p>11.3.2 Surface forces acting on control volume 124</p> <p>11.3.3 Displacement thickness 130</p> <p>11.3.4 Momentum thickness 131</p> <p>11.4 Wall Shear Stress</p> <p><b>12 Boundary Layer of a Flat Plate 132</b></p> <p>12.1 Boundary Layer Equations for a Flat Plate 132</p> <p>12.2 Dimensionless Velocity Profiles 134</p> <p>12.3 Boundary Layer Thickness 136</p> <p>12.4 Wall Shear Stress 140</p> <p>12.5 Displacement Thickness 141</p> <p>12.6 Momentum Thickness 142</p> <p>12.7 Friction Force and Coefficients 143</p> <p><b>13 Frictional Resistance 146</b></p> <p>13.1 Turbulent Boundary Layers 146</p> <p>13.2 Shear Stress in Turbulent Flow 152</p> <p>13.3 Friction Coefficients for Turbulent Flow 153</p> <p>13.4 Model-Ship Correlation Lines 155</p> <p>13.5 Effect of Surface Roughness 157</p> <p>13.6 Effect of Form 160</p> <p>13.7 Estimating Frictional Resistance 161</p> <p><b>14 Inviscid Flow 165</b></p> <p>14.1 Euler Equations for Incompressible Flow 165</p> <p>14.2 Bernoulli Equation 166</p> <p>14.3 Rotation, Vorticity, and Circulation 171</p> <p><b>15 Potential Flow 177</b></p> <p>15.1 Velocity Potential 177</p> <p>15.2 Circulation and Velocity Potential 182</p> <p>15.3 Laplace Equation 184</p> <p>15.4 Bernoulli Equation for Potential Flow 187</p> <p><b>16 Basic Solutions of the Laplace Equation 191</b></p> <p>16.1 Uniform Parallel Flow 191</p> <p>16.2 Sources and Sinks 192</p> <p>16.3 Vortex 196</p> <p>16.4 Combinations of Singularities 198</p> <p>16.4.1 Rankine oval 198</p> <p>16.4.2 Dipole 202</p> <p>16.5 Singularity Distributions 204</p> <p><b>17 Ideal Flow Around A Long Cylinder 207</b></p> <p>17.1 Boundary Value Problem 207</p> <p>17.1.1 Moving cylinder in fluid at rest 208</p> <p>17.1.2 Cylinder at rest in parallel flow 210</p> <p>17.2 Solution and Velocity Potential 211</p> <p>17.3 Velocity and Pressure Field 214</p> <p>17.3.1 Velocity field 215</p> <p>17.3.2 Pressure field 216</p> <p>17.4 D’Alembert's Paradox 218</p> <p>17.5 Added Mass 219</p> <p><b>18 Viscous Pressure Resistance 223</b></p> <p>18.1 Displacement Effect of Boundary Layer 223</p> <p>18.2 Flow Separation 226</p> <p><b>19 Waves and Ship Wave Patterns 230</b></p> <p>19.1 Wave Length, Period, and Height 230</p> <p>19.2 Fundamental Observations 233</p> <p>19.3 Kelvin Wave Pattern 235</p> <p><b>20 Wave Theory 239</b></p> <p>20.1 Overview 239</p> <p>20.2 Mathematical Model for Long-crested Waves 240</p> <p>20.2.1 Ocean bottom boundary condition 241</p> <p>20.2.2 Free surface boundary conditions 242</p> <p>20.2.3 Far field condition 246</p> <p>20.2.4 Nonlinear boundary value problem 247</p> <p>20.3 Linearized Boundary Value Problem 248</p> <p><b>21 Linearization of Free Surface Boundary Conditions 250</b></p> <p>21.1 Perturbation Approach 250</p> <p>21.2 Kinematic Free Surface Condition 252</p> <p>21.3 Dynamic Free Surface Condition 254</p> <p>21.4 Linearized Free Surface Conditions for Waves 256</p> <p><b>22 Linear Wave Theory 259</b></p> <p>22.1 Solution of Linear Boundary Value Problem 259</p> <p>22.2 Far Field Condition Revisited 265</p> <p>22.3 Dispersion Relation 265</p> <p>22.4 Deep Water Approximation 267</p> <p><b>23 Wave Properties 271</b></p> <p>23.1 Linear Wave Theory Results 271</p> <p>23.2 Wave Number 272</p> <p>23.3 Water Particle Velocity and Acceleration 275</p> <p>23.4 Dynamic Pressure 279</p> <p>23.5 Water Particle Motions 280</p> <p><b>24 Wave Energy and Wave Propagation 284</b></p> <p>24.1 Wave Propagation 284</p> <p>24.2 Wave Energy 287</p> <p>24.2.1 Kinetic wave energy 287</p> <p>24.2.2 Potential wave energy 290</p> <p>24.2.3 Total wave energy density 292</p> <p>24.3 Energy Transport and Group Velocity 293</p> <p><b>25 Ship Wave Resistance 299</b></p> <p>25.1 Physics of Wave Resistance 299</p> <p>25.2 Wave Superposition 301</p> <p>25.3 Michell's Integral 310</p> <p>25.4 Panel Methods 312</p> <p><b>26 Ship Model Testing 316</b></p> <p>26.1 Testing Facilities 316</p> <p>26.1.1 Towing Lank 317</p> <p>26.1.2 Cavitation tunnel 320</p> <p>26.2 Ship and Propeller Models 321</p> <p>26.2.1 Turbulence generation 322</p> <p>26.2.2 Loading condition 323</p> <p>26.2.3 Propeller models 324</p> <p>26.3 Model Basins 324</p> <p><b>27 Dimensional Analysis 327</b></p> <p>27.1 Purpose of Dimensional Analysis 327</p> <p>27.2 Buckingham -Theorem 328</p> <p>27.3 Dimensional Analysis of Ship Resistance 328</p> <p><b>28 Laws of Similitude 332</b></p> <p>28.1 Similarities 332</p> <p>28.1.1 Geometric similarity 333</p> <p>28.1.2 Kinematic similarity 333</p> <p>28.1.3 Dynamic similarity 334</p> <p>28.1.4 Summary 340</p> <p>28.2 Partial Dynamic Similarity 340</p> <p>28.2.1 Hypothetical case: full dynamic similarity 340</p> <p>28.2.2 Real world: partial dynamic similarity 342</p> <p>28.2.3 Froude's hypothesis revisited 343</p> <p><b>29 Resistance Test 345</b></p> <p>29.1 Test Procedure 345</p> <p>29.2 Reduction of Resistance Test Data 348</p> <p>29.3 Form Factor k 351</p> <p>29.4 Wave Resistance Coefficient Cw 354</p> <p>29.5 Skin Friction Correction Force FD 355</p> <p><b>30 Full Scale Resistance Prediction 357</b></p> <p>30.1 Model Test Results 357</p> <p>30.2 Corrections and Additional Resistance Components 358</p> <p>30.3 Total Resistance and Effective Power 359</p> <p>30.4 Example Resistance Prediction 360</p> <p><b>31 Resistance Estimates - Guldhammer and Harvald's Method 367</b></p> <p>31.1 Historical Development 367</p> <p>31.2 Guldhammer and Harvald's Method 369</p> <p>31.2.1 Applicability 369</p> <p>31.2.2 Required input 369</p> <p>31.2.3 Resistance estimate 372</p> <p>31.3 Extended Resistance Estimate Example 378</p> <p>31.3.1 Completion of input parameters 379</p> <p>31.3.2 Range of speeds 380</p> <p>31.3.3 Residuary resistance coefficient 380</p> <p>31.3.4 Frictional resistance coefficient 383</p> <p>31.3.5 Additional resistance coefficients 383</p> <p>31.3.6 Total resistance coefficient 384</p> <p>31.3.7 Total resistance and effective power 384</p> <p><b>32 Introduction to Ship Propulsion 389</b></p> <p>32.1 Propulsion Task 389</p> <p>32.2 Propulsion Systems 391</p> <p>32.2.1 Marine propeller 391</p> <p>32.2.2 Water jet propulsion 392</p> <p>32.2.3 Voith Schneider propeller (VSP) 393</p> <p>32.3 Efficiencies in Ship Propulsion 394</p> <p><b>33 Momentum Theory of the Propeller 398</b></p> <p>33.1 Thrust, Axial Momentum, and Mass Flow 398</p> <p>33.2 Ideal Efficiency and ^rust Loading Coefficient 403</p> <p><b>34 Hull-Propeller Interaction 408</b></p> <p>34.1 Wake- Fraction 408</p> <p>34.2 ^rust Deduction Fraction 414</p> <p>34.3 Relative Rotative Efficiency 417</p> <p><b>35 Propeller Geometry 420</b></p> <p>35.1 Propeller Parts 420</p> <p>35.2 Principal Propeller Characteristics 422</p> <p>35.3 Other Geometric Propeller Characteristics 431</p> <p><b>36 Lifting Foils 435</b></p> <p>36.1 Foil Geometry and Flow Patterns 435</p> <p>36.2 Lift and Drag 438</p> <p>36.3 Thin Foil Theory 440</p> <p>36.3.1 Thin foil boundary value problem 441</p> <p>36.3.2 Thin foil body boundary condition 442</p> <p>36.3.3 Decomposition of disturbance potential 445</p> <p><b>37 Thin Foil Theory – Displacement Flow 447</b></p> <p>37.1 Boundary Value Problem 447</p> <p>37.2 Pressure Distribution 452</p> <p>37.3 Elliptical Thickness Distribution 454</p> <p><b>38 Thin Foil Theory – Lifting Flow 459</b></p> <p>38.1 Lifting Foil Problem 459</p> <p>38.2 Glauert ’s Classical Solution 463</p> <p><b>39 Thin Foil Theory – Lifting Flow Properties 469</b></p> <p>39.1 Lift Force and Lift Coefficient 469</p> <p>39.2 Moment and Center of Effort 474</p> <p>39.3 Ideal Angle of Attack 478</p> <p>39.4 Parabolic Mean Line 480</p> <p><b>40 Lifting Wings 484</b></p> <p>40.1 Effects of Limited Wingspan 484</p> <p>40.2 Free and Bound Vorticity 488</p> <p>40.3 Biot-Savart Law 493</p> <p>40.4 Lifting Line Theory 497</p> <p><b>41 Open Water Test 500</b></p> <p>41.1 Test Conditions 500</p> <p>41.2 Propeller Models 503</p> <p>41.3 Test Procedure 504</p> <p>41.4 Data Reduction 506</p> <p><b>42 Full Scale Propeller Performance 509</b></p> <p>42.1 Comparison of Model and Full Scale Propeller Forces 509</p> <p>42.2 ITTC Full Scale Correction Procedure 511</p> <p><b>43 Propulsion Test 516</b></p> <p>43.1 Testing Procedure 516</p> <p>43.2 Data Reduction 519</p> <p>43.3 Hull-Propeller Interaction Parameters 520</p> <p>43.3.1 Model wake- fraction 521</p> <p>43.3.2 Thrust deduction fraction 522</p> <p>43.3.3 Relative rotative efficiency 523</p> <p>43.3.4 Full scale hull-propeller interaction parameters 523</p> <p>43.4 Load Variation Test 525</p> <p><b>44 ITTC 1978 Performance Prediction Method 530</b></p> <p>44.1 Summary of Model Tests 530</p> <p>44.2 Full Scale Power Prediction 531</p> <p>44.3 Summary 534</p> <p>44.4 Solving the Intersection Problem 535</p> <p>44.5 Example 537</p> <p><b>45 Cavitation 541</b></p> <p>45.1 Cavitation Phenomenon 541</p> <p>45.2 Cavitation Inception 543</p> <p>45.3 Locations and Types of Cavitation 546</p> <p>45.4 Detrimental Effects of Cavitation 548</p> <p><b>46 Cavitation Prevention 552</b></p> <p>46.1 Design Measures 552</p> <p>46.2 Keller's Formula 553</p> <p>46.3 Burrill's Cavitation Chart 554</p> <p>46.4 Other Design Measures 557</p> <p><b>47 Propeller Series Data 560</b></p> <p>47.1 Wageningen B-Series 560</p> <p>47.2 Wageningen B-Series Polynomials 561</p> <p>47.3 Other Propeller Series 565</p> <p><b>48 Propeller Design Process 569</b></p> <p>48.1 Design Tasks and Input Preparation 569</p> <p>48.2 Optimum Diameter Selection 571</p> <p>48.2.1 Propeller design task 1 572</p> <p>48.2.2 Propeller design task 2 577</p> <p>48.3 Optimum Rate of Revolution Selection 579</p> <p>48.3.1 Propeller design task 3 579</p> <p>48.3.2 Propeller design task 4 581</p> <p>48.4 Design Charts 581</p> <p>48.5 Computational Tools 585</p> <p><b>49 Hull-Propeller Matching Examples 587</b></p> <p>49.1 Optimum Rate of Revolution Problem 587</p> <p>49.1.1 Design constant 588</p> <p>49.1.2 Initial expanded area ratio 589</p> <p>49.1.3 First iteration 590</p> <p>49.1.4 Cavitation check for first iteration 593</p> <p>49.1.5 Second iteration 594</p> <p>49.1.6 Final selection by interpolation 596</p> <p>49.2 Optimum Diameter Problem 598</p> <p>49.2.1 Design constant 599</p> <p>49.2.2 Initial expanded area ratio 600</p> <p>49.2.3 First iteration 601</p> <p>49.2.4 Cavitation check for first iteration 604</p> <p>49.2.5 Second iteration 605</p> <p>49.2.6 Final selection by interpolation 607</p> <p>49.2.7 Attainable speed check 608</p> <p><b>50 Holtrop and Mennen's Method 611</b></p> <p>50.1 Overview of the Method 611</p> <p>50.1.1 Applicability 611</p> <p>50.1.2 Required input 612</p> <p>50.2 Procedure 614</p> <p>50.2.1 Resistance components 615</p> <p>50.2.2 Total resistance 621</p> <p>50.2.3 Hull-propeller interaction parameters 621</p> <p>50.3 Example 623</p> <p>50.3.1 Completion of input parameters 623</p> <p>50.3.2 Resistance estimate 623</p> <p>50.3.3 Powering estimate 625</p> <p><b>51 Hollenbach's Method 628</b></p> <p>51.1 Overview of the method 628</p> <p>51.1.1 Applicability 629</p> <p>51.1.2 Required input 629</p> <p>51.2 Resistance Estimate 631</p> <p>51.2.1 Frictional resistance coefficient 632</p> <p>51.2.2 Mean residuary resistance coefficient 632</p> <p>51.2.3 Minimum residuary resistance coefficient 635</p> <p>51.2.4 Residuary resistance coefficient 637</p> <p>51.2.5 Correlation allowance 637</p> <p>51.2.6 Appendage resistance 637</p> <p>51.2.7 Environmental resistance 638</p> <p>51.2.8 Total resistance 638</p> <p>51.3 Hull-Propeller Interaction Parameters 639</p> <p>51.3.1 Relative rotative efficiency 639</p> <p>51.3.2 Thrust deduction fraction 640</p> <p>51.3.3 Wake fraction 640</p> <p>51.4 Resistance and Propulsion Estimate Example 642</p> <p>51.4.1 Completion of input parameters 642</p> <p>51.4.2 Powering estimate 643</p> <p>Index 651</p>
<p><b>LOTHAR BIRK</b> has more than two decades of experience teaching ship and offshore hydrodynamics, first at the Technische Universität Berlin and now at the University of New Orleans (UNO). Fascinated by the world of boats and ships, he studied naval architecture at Technische Universität Berlin (TUB) in Germany. After graduation he worked at TUB as a research scientist completing projects and teaching classes related to hydrodynamics and optimization of ship and offshore structures. In 2004, he joined the faculty of the School of Naval Architecture and Marine Engineering at UNO where he teaches classes in ship resistance and propulsion, propeller hydrodynamics, experimental, numerical and offshore hydrodynamics as well as computer aided design and optimization. His passion for teaching has earned him several awards by student organizations.
<p><b>BRIDGING THE INFORMATION GAP BETWEEN FLUID MECHANICS AND SHIP HYDRODYNAMICS</b> <p><i>Fundamentals of Ship Hydrodynamics</i> is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. <p>The book is subdivided into fifty-one chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. <p>Key features: <ul> <li>Covers the range from basic fluid mechanics to applied ship hydrodynamics.</li> <li>Subdivided into 51 succinct chapters.</li> <li>In-depth coverage of material enables self-study.</li> <li>Around 250 figures and tables.</li> </ul> <p><i>Fundamentals of Ship Hydrodynamics</i> is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
Preis: 156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
Preis: 156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
Preis: 159,99 €