Details

Mobile and Wireless Communications for IMT-Advanced and Beyond


Mobile and Wireless Communications for IMT-Advanced and Beyond


1. Aufl.

von: Afif Osseiran, Jose F. Monserrat, Werner Mohr

110,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.08.2011
ISBN/EAN: 9781119977490
Sprache: englisch
Anzahl Seiten: 328

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A timely addition to the understanding of IMT-Advanced, this book places particular emphasis on the new areas which IMT-Advanced technologies rely on compared with their predecessors. These latest areas include Radio Resource Management, Carrier Aggregation, improved MIMO support and Relaying. <p>Each technique is thoroughly described and illustrated before being surveyed in context of the LTE-Advanced standards. The book also presents state-of-the-art information on the different aspects of the work of standardization bodies (such as 3GPP and IEEE), making global links between them.</p> <ul> <li>Explores the latest research innovations to assess the future of the LTE standard</li> <li>Covers the latest research techniques for beyond IMT-Advanced such as Coordinated multi-point systems (CoMP), Network Coding, Device-to-Device and Spectrum Sharing</li> <li>Contains key information for researchers from academia and industry, engineers, regulators and decision makers working on LTE-Advanced and beyond</li> </ul>
<b>About the Editors xiii</b> <p><b>Preface xv</b></p> <p><b>Acknowledgements xvii</b></p> <p><b>List of Abbreviations xix</b></p> <p><b>List of Contributors xxv</b></p> <p><b>1 Introduction 1</b></p> <p>1.1 Market and Technology Trends 1</p> <p>1.2 Technology Evolution 3</p> <p>1.3 Development of IMT-Advanced and Beyond 6</p> <p>References 8</p> <p><b>2 Radio Resource Management 11</b></p> <p>2.1 Overview of Radio Resource Management 11</p> <p>2.2 Resource Allocation in IMT-Advanced Technologies 13</p> <p><i>2.2.1 Main IMT-Advanced Characteristics</i> 13</p> <p><i>2.2.2 Scheduling</i> 16</p> <p><i>2.2.3 Interference Management</i> 16</p> <p><i>2.2.4 Carrier Aggregation</i> 18</p> <p><i>2.2.5 MBMS Transmission</i> 18</p> <p>2.3 Dynamic Resource Allocation 19</p> <p><i>2.3.1 Resource Allocation and Packet Scheduling Using Utility Theory</i> 19</p> <p><i>2.3.2 Resource Allocation with Relays</i> 22</p> <p><i>2.3.3 Multiuser Resource Allocation Maximizing the UE QoS</i> 24</p> <p><i>2.3.4 Optimization Problems and Performance</i> 26</p> <p>2.4 Interference Coordination in Mobile Networks 26</p> <p><i>2.4.1 Power Control</i> 27</p> <p><i>2.4.2 Resource Partitioning</i> 28</p> <p><i>2.4.3 MIMO Busy Burst for Interference Avoidance</i> 33</p> <p>2.5 Efficient MBMS Transmission 35</p> <p><i>2.5.1 MBMS Transmission</i> 36</p> <p><i>2.5.2 Performance Assessment</i> 37</p> <p>2.6 Future Directions of RRM Techniques 39</p> <p>References 40</p> <p><b>3 Carrier Aggregation 43</b></p> <p>3.1 Basic Concepts 43</p> <p>3.2 ITU-R Requirements and Implementation in Standards 45</p> <p>3.3 Evolution Towards Future Technologies 48</p> <p><i>3.3.1 Channel Coding</i> 48</p> <p><i>3.3.2 Scheduling</i> 51</p> <p><i>3.3.3 Channel Quality Indicator</i> 53</p> <p><i>3.3.4 Additional Research Directions</i> 54</p> <p>3.4 Cognitive Radio Enabling Dynamic/Opportunistic Carrier Aggregation 55</p> <p><i>3.4.1 Spectrum Sharing and Opportunistic Carrier Aggregation</i> 56</p> <p><i>3.4.2 Spectrum Awareness</i> 58</p> <p><i>3.4.3 Cognitive Component Carrier Identification, Selection and Mobility</i> 59</p> <p>3.5 Implications for Signaling and Architecture 59</p> <p>3.6 Hardware and Legal Limitations 60</p> <p>References 61</p> <p><b>4 Spectrum Sharing 63</b></p> <p>4.1 Introduction 63</p> <p>4.2 Literature Overview 64</p> <p><i>4.2.1 Spectrum Sharing from a Game Theoretic Perspective</i> 66</p> <p><i>4.2.2 Femtocells</i> 67</p> <p>4.3 Spectrum Sharing with Game Theory 68</p> <p><i>4.3.1 Noncooperative Case</i> 68</p> <p><i>4.3.2 Hierarchical Case</i> 69</p> <p>4.4 Spectrum Trading 70</p> <p><i>4.4.1 Revenue and Cost Function for the Offering Operator</i> 73</p> <p><i>4.4.2 Numerical Results</i> 74</p> <p>4.5 Femtocells and Opportunistic Spectrum Usage 75</p> <p><i>4.5.1 Femtocells and Standardization</i> 77</p> <p><i>4.5.2 Self-Organized Femtocells</i> 79</p> <p><i>4.5.3 Beacon-Based Femtocells</i> 81</p> <p><i>4.5.4 Femtocells with Intercell Interference Coordination</i> 82</p> <p><i>4.5.5 Femtocells with Game Theory</i> 83</p> <p>4.6 Conclusion, Discussion and Future Research 84</p> <p><i>4.6.1 Future Research</i> 85</p> <p>References 86</p> <p><b>5 Multiuser MIMO Systems 89</b></p> <p>5.1 MIMO Fundamentals 89</p> <p><i>5.1.1 System Model</i> 91</p> <p><i>5.1.2 Point-to-Point MIMO Communications</i> 92</p> <p><i>5.1.3 Multiuser MIMO Communications</i> 96</p> <p><i>5.1.4 MIMO with Interference</i> 100</p> <p>5.2 MIMO in LTE-Advanced and 802.16m 101</p> <p><i>5.2.1 LTE-Advanced</i> 102</p> <p><i>5.2.2 WiMAX Evolution</i> 104</p> <p>5.3 Generic Linear Precoding with CSIT 104</p> <p><i>5.3.1 Transmitter–Receiver Design</i> 105</p> <p><i>5.3.2 Transceiver Design with Interference Nulling</i> 110</p> <p>5.4 CSI Acquisition for Multiuser MIMO 112</p> <p><i>5.4.1 Limited Feedback</i> 112</p> <p><i>5.4.2 CSI Sounding</i> 113</p> <p>5.5 Future Directions of MIMO Techniques 114</p> <p>References 115</p> <p><b>6 Coordinated Multi Point (CoMP) Systems 121</b></p> <p>6.1 Overview of CoMP 121</p> <p><i>6.1.1 CoMP Types</i> 122</p> <p><i>6.1.2 Architectures and Clustering</i> 123</p> <p><i>6.1.3 Theoretical Performance Limits and Implementation Constraints</i> 126</p> <p>6.2 CoMP in the Standardization Bodies 129</p> <p><i>6.2.1 Overview of CoMP Studies</i> 129</p> <p><i>6.2.2 Design Choices for a CoMP Functionality</i> 131</p> <p>6.3 Generic System Model for Downlink CoMP 133</p> <p><i>6.3.1 SINR for Linear Transmissions</i> 133</p> <p><i>6.3.2 Compact Matricial Model</i> 134</p> <p>6.4 Joint Processing Techniques 134</p> <p><i>6.4.1 State of the Art</i> 135</p> <p><i>6.4.2 Potential of Joint Processing</i> 136</p> <p><i>6.4.3 Dynamic Joint Processing</i> 137</p> <p><i>6.4.4 Uplink Joint Processing</i> 141</p> <p>6.5 Coordinated Beamforming and Scheduling Techniques 142</p> <p><i>6.5.1 State of the Art</i> 142</p> <p><i>6.5.2 Decentralized Coordinated Beamforming</i> 143</p> <p><i>6.5.3 Coordinated Scheduling via Worst Companion Reporting</i> 145</p> <p>6.6 Practical Implementation of CoMP in a Trial Environment 147</p> <p><i>6.6.1 Setup and Scenarios</i> 149</p> <p><i>6.6.2 Measurement Results</i> 149</p> <p>6.7 Future Directions 151</p> <p>References 152</p> <p><b>7 Relaying for IMT-Advanced 157</b></p> <p>7.1 An Overview of Relaying 157</p> <p><i>7.1.1 Relay Evolution</i> 158</p> <p><i>7.1.2 Relaying Deployment Scenarios</i> 159</p> <p><i>7.1.3 Relaying Protocol Strategies</i> 160</p> <p><i>7.1.4 Half Duplex and Full Duplex Relaying</i> 162</p> <p><i>7.1.5 Numerical Example</i> 162</p> <p>7.2 Relaying in the Standard Bodies 164</p> <p><i>7.2.1 Relay Types in LTE-Advanced Rel-10</i> 164</p> <p><i>7.2.2 Relay Nodes in IEEE 802.16m</i> 166</p> <p>7.3 Comparison of Relaying and CoMP 166</p> <p><i>7.3.1 Protocols and Resource Management</i> 167</p> <p><i>7.3.2 Simulation Results</i> 169</p> <p>7.4 In-band RNs versus Femtocells 171</p> <p>7.5 Cooperative Relaying for Beyond IMT-Advanced 173</p> <p>7.6 Relaying for beyond IMT-Advanced 176</p> <p><i>7.6.1 Multihop RNs</i> 176</p> <p><i>7.6.2 Mobile Relay</i> 177</p> <p><i>7.6.3 Network Coding</i> 177</p> <p>References 177</p> <p><b>8 Network Coding in Wireless Communications 181</b></p> <p>8.1 An Overview of Network Coding 181</p> <p><i>8.1.1 Historical Background</i> 182</p> <p><i>8.1.2 Types of Network Coding</i> 183</p> <p><i>8.1.3 Applications of Network Coding</i> 183</p> <p>8.2 Uplink Network Coding 188</p> <p><i>8.2.1 Detection Strategies</i> 188</p> <p><i>8.2.2 User Grouping</i> 190</p> <p><i>8.2.3 Relay Selection</i> 191</p> <p><i>8.2.4 Performance</i> 192</p> <p><i>8.2.5 Integration in IMT-Advanced and Beyond</i> 194</p> <p>8.3 Nonbinary Network Coding 194</p> <p><i>8.3.1 Nonbinary NC based on UE Cooperation</i> 195</p> <p><i>8.3.2 Nonbinary NC for Multiuser and Multirelay</i> 196</p> <p><i>8.3.3 Performance</i> 197</p> <p><i>8.3.4 Integration in IMT-Advanced and Beyond</i> 198</p> <p>8.4 Network Coding for Broadcast and Multicast 199</p> <p><i>8.4.1 Efficient Broadcast Network Coding Scheme</i> 200</p> <p><i>8.4.2 Performance</i> 201</p> <p>8.5 Conclusions and Future Directions 202</p> <p>References 203</p> <p><b>9 Device-to-Device Communication 207</b></p> <p>9.1 Introduction 207</p> <p>9.2 State of the Art 208</p> <p><i>9.2.1 In Standards</i> 208</p> <p><i>9.2.2 In Literature</i> 210</p> <p>9.3 Device-to-Device Communication as Underlay to Cellular Networks 211</p> <p><i>9.3.1 Session Setup</i> 212</p> <p><i>9.3.2 D2D Transmit Power</i> 214</p> <p><i>9.3.3 Multiantenna Techniques</i> 215</p> <p><i>9.3.4 Radio Resource Management</i> 220</p> <p>9.4 Future Directions 225</p> <p>References 228</p> <p><b>10 The End-to-end Performance of LTE-Advanced 231</b></p> <p>10.1 IMT-Advanced Evaluation: ITU Process, Scenarios and Requirements 231</p> <p><i>10.1.1 ITU-R Process for IMT-Advanced</i> 232</p> <p><i>10.1.2 Evaluation Scenarios</i> 234</p> <p><i>10.1.3 Performance Requirements</i> 235</p> <p>10.2 Short Introduction to LTE-Advanced Features 238</p> <p><i>10.2.1 The WINNER+ Evaluation Group Assessment Approach</i> 238</p> <p>10.3 Performance of LTE-Advanced 239</p> <p><i>10.3.1 3GPP Self-evaluation</i> 239</p> <p><i>10.3.2 Simulative Performance Assessment by WINNER+</i> 241</p> <p><i>10.3.3 LTE-Advanced Performance in the Rural Indian Open Area Scenario</i> 243</p> <p>10.4 Channel Model Implementation and Calibration 243</p> <p><i>10.4.1 IMT-Advanced Channel Model</i> 243</p> <p><i>10.4.2 Calibration of Large-Scale Parameters</i> 246</p> <p><i>10.4.3 Calibration of Small-Scale Parameters</i> 247</p> <p>10.5 Simulator Calibration 248</p> <p>10.6 Conclusion and Outlook on the IMT-Advanced Process 249</p> <p>References 250</p> <p><b>11 Future Directions 251</b></p> <p>11.1 Radio Resource Allocation 252</p> <p>11.2 Heterogeneous Networks 252</p> <p>11.3 MIMO and CoMP 253</p> <p>11.4 Relaying and Network Coding 254</p> <p>11.5 Device-to-Device Communications 254</p> <p>11.6 Green and Energy Efficiency 255</p> <p>References 256</p> <p><b>Appendices 259</b></p> <p><b>Appendix A Resource Allocation 261</b></p> <p>A.1 Dynamic Resource Allocation 261</p> <p><i>A.1.1 Utility Predictive Scheduler</i> 261</p> <p><i>A.1.2 Resource Allocation with Relays</i> 261</p> <p>A.2 Multiuser Resource Allocation 263</p> <p><i>A.2.1 PHY/MAC Layer Model</i> 263</p> <p><i>A.2.2 APP Layer Model</i> 263</p> <p><i>A.2.3 Optimization Problem</i> 264</p> <p><i>A.2.4 Simulation Results</i> 265</p> <p>A.3 Busy Burst Extended to MIMO 266</p> <p>A.4 Efficient MBMS Transmission 267</p> <p><i>A.4.1 Service Operation</i> 267</p> <p><i>A.4.2 Frequency Division Multiplexing (FDM) Performance</i> 268</p> <p><b>Appendix B Spectrum Awareness 269</b></p> <p>B.1 Spectrum Sensing 269</p> <p>B.2 Geo-Location Databases 270</p> <p>B.3 Beacon Signaling 270</p> <p><b>Appendix C CoordinatedMultiPoint (CoMP) 271</b></p> <p>C.1 Joint Processing Methods 271</p> <p><i>C.1.1 Partial Joint Processing</i> 271</p> <p><i>C.1.2 Dynamic Base Station Clustering</i> 271</p> <p>C.2 Coordinated Beamforming and Scheduling 273</p> <p><i>C.2.1 Decentralized Coordinated Beamforming</i> 273</p> <p><i>C.2.2 Coordinated Scheduling via Worst Companion Reporting</i> 276</p> <p>C.3 Test-Bed: Distributed Realtime Implementation 276</p> <p><b>Appendix D Network Coding 281</b></p> <p>D.1 Nonbinary NC based on UE Cooperation 281</p> <p>D.2 Multiuser and Multirelay Scenario 282</p> <p><b>Appendix E LTE-Advanced Analytical Performance and Peak Spectral Efficiency 285</b></p> <p>E.1 Analytical and Inspection Performance Assessment by WINNER+ 285</p> <p><i>E.1.1 Analytical Evaluation</i> 285</p> <p><i>E.1.2 Inspection</i> 286</p> <p>E.2 Peak Spectral Efficiency Calculation 287</p> <p><i>E.2.1 FDD Mode Downlink Direction</i> 287</p> <p><i>E.2.2 FDD Mode Uplink Direction</i> 288</p> <p><i>E.2.3 TDD Mode Downlink Direction</i> 289</p> <p><i>E.2.4 TDD Mode Uplink Direction</i> 291</p> <p><i>E.2.5 Comparison with Self-Evaluation</i> 292</p> <p>References 292</p> <p><b>Index 295</b></p>
"The book is up with the latest thinking and standards, and as such provides a particularly useful coverage of the way in which cellular telecommunications is moving. It would be a valuable addition to the library of any individual or company that is serious about keeping up with the latest LTE technology." (Radio-Electronics.com, 1 January 2012) <p> </p>
<b>Afif Osseiran</b> received a B.Sc. in Electrical and Electronics from Université de Rennes I, France, in 1995, a DEA (B.Sc.E.E) degree in Electrical Engineering from Université de Rennes I and INSA Rennes in 1997, and a M.A.Sc. degree in Electrical and Communication Engineering from École Polytechnique de Montreal, Canada, in 1999. In 2006, he defended successfully his Ph.D thesis at the Royal Institute of Technology (KTH), Sweden. Since 1999 he has been with Ericsson, Sweden. During the years 2006 and 2007 he led in the European project WINNER the MIMO task. From April 2008 to June 2010, he was the technical manager of the Eureka Celtic project WINNER+. Dr. Osseiran is listed in the Who's Who in the World, and in Science & Engineering. He has published more then 50 technical papers and has in 2009 co-authored a book on <i>Radio Technologies and Concepts for IMT-Advanced</i> with John Wiley & Sons. Since 2006, he has been teaching at Master's level at KTH. <p><b>Jose F. Monserrat</b> received his MSc. degree with High Honors and Ph.D. degree in Telecommunications engineering from the Polytechnic University of Valencia (UPV) in 2003 and 2007, respectively. In 2009 he was awarded with the best young researcher prize of Valencia. He is currently an associate professor in the Communications Department of the UPV. His research focuses on the application of complex computation techniques to Radio Resource Management (RRM) strategies and to the optimization of current and future mobile communications networks, as LTE-Advanced and IEEE 802.16m. He has been involved in several European Projects, acting as task or work package leader in WINNER+, ICARUS, COMIC and PROSIMOS. In 2010 he also participated in one external evaluation group within ITU-R on the performance assessment of the candidates for the future family of standards for IMT-Advanced.</p> <p><b>Werner Mohr</b> graduated from the University of Hannover, Germany, with a Master's degree in electrical engineering in 1981 and a Ph.D. degree in 1987. He joined Siemens AG, in 1991. He was involved in several EU funded projects and ETSI standardization groups on UMTS and systems beyond 3G. In December 1996 he became project manager of the European ACTS FRAMES Project until the project finished in August 1999. This project developed the basic concepts of the UMTS radio interface. Since April 2007 he has been with Nokia Siemens Networks GmbH & Co. KG, Germany, where he is Head of Research Alliances. He was the coordinator of the WINNER Project in Framework Program 6 of the European Commission, and the Eureka Celtic project WINNER+. Dr. Mohr is an IEEE Senior Member. He is a co-author of the books <i>Third Generation Mobile Communication Systems</i> and <i>Radio Technologies and Concepts for IMT-Advanced</i>.</p>
A timely addition to the understanding of IMT-Advanced, this book places particular emphasis on the new areas which IMT-Advanced technologies rely on compared with their predecessors. These latest areas include Radio Resource Management, Carrier Aggregation, improved MIMO support and Relaying. <p>Each technique is thoroughly described and illustrated before being surveyed in context of the LTE-Advanced standards. The book also presents state-of-the-art information on the different aspects of the work of standardization bodies (such as 3GPP and IEEE), making global links between them.</p> <ul> <li>Explores the latest research innovations to assess the future of the LTE standard</li> <li>Covers the latest research techniques for beyond IMT-Advanced such as Coordinated multi-point systems (CoMP), Network Coding, Device-to-Device and Spectrum Sharing</li> <li>Contains key information for researchers from academia and industry, engineers, regulators and decision makers working on LTE-Advanced and beyond</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €